We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Diagnostic Solution Identifies Sepsis Causing Microorganisms and Predicts Antibiotic Resistance in 90 Minutes

By HospiMedica International staff writers
Posted on 06 Jun 2022
Print article
Image: The Weezion dx solution is designed for medical analysis hospital platforms that diagnose bacteremia (Photo courtesy of Weezion)
Image: The Weezion dx solution is designed for medical analysis hospital platforms that diagnose bacteremia (Photo courtesy of Weezion)

Sepsis is a life-threatening organ dysfunction caused by the body’s toxic response to infection and can progress to septic shock, which has a mortality rate of 40%. A blood culture is the main way to check for the microbial agent (bacteria or fungi) causing the infection and will allow to diagnose the bacteremia or fungemia as well as determine the sensitivity of these microorganisms to antibiotics and antifungals. The speed at which appropriate treatment can be administered, based on the type of infection, determines the survival of the patient. Now, a new in-vitro diagnostic solution for microbial infections identifies the pathogen(s) as well as allows to identify and predict the resistance profile within 90 minutes to ensure that the appropriate anti-infective treatment can be adapted or administered quickly, reducing the risk of death in severe systemic infections.

Weezion’s (Lyon, France) Weezion dx solution is based on a proteomic approach using patented targeted mass spectrometry technology and identifies the pathogen(s) present in the clinical sample, as well as jointly detects and quantifies the proteins responsible for antibiotic resistance. Using a positive blood culture, the solution allows clinicians to identify and predict the resistance profile within 90 minutes.

Despite major advances in the last 20 years in understanding the pathophysiology of sepsis, no therapeutic revolution has yet seen the light of day. It is therefore in the diagnostic phase where progress can be made. Reducing the time to receive the results of the identification of the pathogen and its resistance profile will ensure a more rapid implementation or adaptation of a suitable anti-infective treatment. Existing identification methods, based on the molecular detection of the main pathogens and some of their resistance genes, are expensive and non-exhaustive. MALDI/TOF mass spectrometry technology has shortened the identification phase but does not provide any prediction of resistance. The rapid antibiogram from a positive blood culture vial takes several hours of incubation before validation and most of the technologies used are expensive. Therefore there is an urgent need for a resistance identification and determination tool that is rapid, more comprehensive than current methods and economically sustainable.

Designed for medical analysis hospital platforms that diagnose bacteremia, the Weezion dx solution is comprised of an operational pre-analytical sample protocol from a blood culture aliquot that requires limited manual or automated steps, in less than 10 minutes. It follows a global analytical protocol that guarantees a 90-minute diagnostic phase and allows the management of three blood culture samples per hour in order to satisfy the maximum flow of large hospital microbiology platforms. It includes prototype software to manage the decision tree of the mass spectrometry and enables identification of a panel of scout ribosomal peptides specific to microbial families or species that allows for the implementation of a decision tree to ensure accurate identification of 98% of pathogens associated with bacteremia. The Weezion dx solution also enables the identification of a panel of peptides that detects the resistance mechanisms to the three main types of antibiotics used to treat bacteremia.

Related Links:
Weezion 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Radial Shock Wave Device
MASTERPULS »ultra«

Print article

Channels

Critical Care

view channel
Image: A demonstration of the on-skin wearable bioelectronic device (Photo courtesy of University of Missouri)

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants

A team of researchers at the University of Missouri (Columbia, MO, USA) has achieved a milestone in developing a state-of-the-art on-skin wearable bioelectronic device. This development comes from a lab... Read more

Surgical Techniques

view channel
Image: The hyperspectral imaging system extracts molecular vibrations of different resins and distinguishes between them with high reproducibility (Photo courtesy of Hiroshi Takemura from Tokyo University of Science)

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Hyperspectral imaging (HSI) is an advanced technique that captures and processes information across a given electromagnetic spectrum. Near-infrared hyperspectral imaging (NIR-HSI) has particularly gained... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more