We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Blood Test to Separate Bacterial and Viral Infections Could Reduce Antibiotic Overuse

By HospiMedica International staff writers
Posted on 26 Dec 2022
Print article
Image: New blood test to identify infections could reduce global antibiotic overuse (Photo courtesy of Pexels)
Image: New blood test to identify infections could reduce global antibiotic overuse (Photo courtesy of Pexels)

In developing countries, most antibiotic prescriptions are not only pointless - an estimated 70% to 80% of them are given for viral infections, which the medications don’t treat - they’re also harmful, as overuse of antibiotics accelerates antibiotic resistance. A similar problem exists in the U.S., where an estimated 30% to 50% of antibiotic prescriptions are given for viral infections. Existing methods to diagnose whether a patient has a bacterial or viral infection include growing the pathogen in a petri dish, which takes several days, or polymerase chain reaction (PCR) testing, which requires knowing the specific pathogen to look for. Now, a new gene expression-based test could allow doctors around the world to quickly and accurately distinguish between bacterial and viral infections, thereby cutting down on antibiotic overuse.

The test developed by scientists at Stanford Medicine (Stanford, CA, USA) is based on how the patient’s immune system responds to an infection. It is the first such diagnostic test validated in diverse global populations - accounting for a wider range of bacterial infections - and the only one to meet the accuracy targets set by the World Health Organization and the Foundation for Innovative New Diagnostics to address antibiotic resistance. Those targets include at least 90% sensitivity (correctly identifying true positives) and 80% specificity (correctly identifying true negatives) to distinguish bacterial and viral infections. The test is one of a new crop of diagnostic tests that look at the host response - that is, how the patient’s immune system is reacting - to identify the type of infection. They measure the expression of certain genes involved in the host’s immune response.

Current host-response tests can distinguish extracellular bacterial infections from viral infections with more than 80% accuracy, but they can identify only 40% to 70% of intracellular infections. Because these host-response tests have been designed using data from Western Europe and North America, they fail to account for the types of infections that are prevalent in low- and middle-income countries. In particular, they have trouble distinguishing the more subtle differences between intracellular bacterial infections and viral infections. In developing countries, common bacterial infections like typhus and tuberculosis are caused by intracellular bacteria, which replicate inside human cells, as do viruses.

To develop a diagnostic test that can separate both types of bacterial infections from viral infections, the Stanford Medicine scientists used publicly available gene expression data from 35 countries. These included 4,754 samples from people of various ages, sexes and races with known infections. The diversity of patients, infections and types of data is more representative of the real world, according to the researchers. Using machine learning and half of these samples, they identified eight genes that are expressed differently in bacterial versus viral infections. They validated their eight-gene test on the remaining samples and more than 300 new samples collected from Nepal and Laos.

They found that these eight genes could distinguish intracellular and extracellular bacterial infections from viral infections with high accuracy, achieving 90% sensitivity and 90% specificity. It is the first diagnostic test to meet (and exceed) the standards proposed by the World Health Organization and the Foundation for Innovative New Diagnostics. The researchers hope that the new diagnostic test can eventually be translated into a point-of-care test and adopted by doctors in both developed and developing countries, as it requires only a blood sample and can be performed in 30 to 45 minutes. The team has applied for a patent on the test.

“Accurately diagnosing whether a patient has a bacterial or viral infection is one of the biggest global health challenges,” said Purvesh Khatri, PhD, associate professor of medicine and biomedical data science, and the senior author. “We’ve shown that this eight-gene signature has higher accuracy and more generalizability for distinguishing bacterial and viral infections, irrespective of whether they are intracellular or extracellular, whether a patient is in a developed or developing country, a man or a woman, an infant or an 80-year-old.”

Related Links:
Stanford Medicine

Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Pre-Op Planning Solution
Sectra 3D Trauma

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more