HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

First-of-Its-Kind Wearable Patch Wirelessly Detects C-Reactive Protein In Sweat

By HospiMedica International staff writers
Posted on 26 Jun 2023
Print article
Image: Wearable wireless sweat patch uses graphene sensor to detect CRP levels (Photo courtesy of Caltech)
Image: Wearable wireless sweat patch uses graphene sensor to detect CRP levels (Photo courtesy of Caltech)

Most human diseases and disorders, from arthritis to Zika fever, are characterized by some degree of inflammation. Although inflammation is most commonly associated with symptoms such as pain, redness, and swelling, it is also linked to a range of biochemical markers. One such marker is the C-reactive protein (CRP), produced by the liver. Given its frequent occurrence during inflammation, its presence in the bloodstream is a strong indication of an underlying medical issue. Now, scientists have developed a unique wearable skin sensor that wirelessly detects CRP in human sweat. This sensor could simplify health monitoring for patients and healthcare providers, eliminating the need for more intrusive blood tests.

CRP detection is more challenging compared to other molecules identifiable through sweat sensors, primarily because CRP is found in lower concentrations in the blood than other biomarkers. This is largely due to the larger size of CRP molecules, making their secretion from the bloodstream into sweat more difficult. Additionally, sensitive CRP detection often necessitates particular laboratory steps that wash samples to ensure consistent sensing. The CRP sensor created by researchers at Caltech (Pasadena, CA, USA) is based on laser-engraved graphene, a carbon material in sheet form. This graphene structure houses numerous tiny pores, thereby creating a vast surface area. These pores are infused with antibodies that bind to CRP and special molecules (redox molecules) capable of producing a small electric current under specific conditions.

The sensor also incorporates gold nanoparticles, each carrying a separate set of CRP antibodies (detector antibodies). When CRP molecules enter the sensor through sweat, they latch onto both the detector antibodies on the gold nanoparticles and the antibodies on the graphene. This temporary adhesion of the nanoparticles to the graphene triggers the redox molecule to create an electrical current that can be measured by electronic components connected to the sensor. As each gold nanoparticle carries multiple detector antibodies, they amplify the faint signal that would otherwise be provided by a single CRP molecule. To account for individual variations in sweat compositions that could affect the biosensor's electrochemical signal, the sensor was also engineered to measure the concentration of ions, the pH of the sweat, and skin temperature. This work demonstrates for the first time that sweat CRP can be detected accurately and correlates well with its counterpart in blood, carrying implications for both lab work and practical medical applications.

"This is a general platform that lets us monitor extremely low-level molecules in our body fluids. We hope to expand this platform to monitor other clinically relevant protein and hormone molecules," said Wei Gao, whose lab is responsible for the development of a variety of wearable sweat sensors, including this latest one. "We also want to see if this can be used for chronic disease management. Inflammation means a risk for many patients. If they could be monitored at home, their risk can be identified, and they can be given timely treatment."

Related Links:
Caltech 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Multilevel Self-Loading Stretcher
CARRERA XL

Print article

Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more