Copper Surfaces Can Destroy MRSA Pathogen Spread
By HospiMedica International staff writers Posted on 21 Jun 2016 |
Image: Dr. Sarah Warnes and Professor Bill Keevil (Photo courtesy of the University of Southampton).
A new study demonstrates that methicillin-resistant Staphylococcus aureus (MRSA) bacteria die on copper surfaces by a multifaceted attack of copper ions and reactive oxygen species (ROS).
Researchers at the University of Southampton (United Kingdom) conducted a study to examine the efficacy of copper in combating contamination of surfaces by MRSA via fingertips, which dry rapidly and may be overlooked by cleaning regimes, unlike visible droplets. The bacteria can be deposited on a surface by one person touching it, or via contaminated body fluids, and subsequently picked up and spread to other surfaces, potentially causing thousands of infections. In a previous study by the same researchers, a simulated droplet contamination of MRSA--such as in a sneeze or a splash—was killed on copper and copper alloy surfaces within 90 minutes.
The new study showed that the elimination of contamination of surfaces via finger was even faster, with a 5-log reduction of a hardy epidemic strain of MRSA (EMRSA-16) observed following 10 minutes of contact with copper, and 4-log reduction observed on copper nickel and cartridge brass alloys within 15 minutes. The researchers also found that bacterial respiration was compromised on the copper surfaces, and that superoxide ROS were generated as part of the killing mechanism. The study was published in the April 2016 issue of Applied and Environmental Microbiology.
“Our latest research shows that in simulated fingertip contamination of surfaces with millions of MRSA or MSSA, the cells can remain alive for long periods on non-antimicrobial surfaces – such as stainless steel – but are killed even more rapidly than droplet contamination on copper and copper alloys,” said lead author Sarah Warnes, PhD. “Exposure to copper damages the bacterial respiration and DNA, resulting in irreversible cell breakdown and death.”
“It’s important to understand the mechanism of copper’s antimicrobial efficacy because microorganisms have evolved various mechanisms to convey resistance to disinfectants and antibiotics,” added study co-author Professor Bill Keevil, PhD. “Our work shows that copper targets various cellular sites, not only killing bacterial and viral pathogens, but also rapidly destroying their nucleic acid genetic material so there is no chance of mutation occurring and nothing to pass on to other microbes, a process called horizontal gene transfer. Consequently, this helps prevent breeding the next generation of superbug.”
Related Links:
University of Southampton
Researchers at the University of Southampton (United Kingdom) conducted a study to examine the efficacy of copper in combating contamination of surfaces by MRSA via fingertips, which dry rapidly and may be overlooked by cleaning regimes, unlike visible droplets. The bacteria can be deposited on a surface by one person touching it, or via contaminated body fluids, and subsequently picked up and spread to other surfaces, potentially causing thousands of infections. In a previous study by the same researchers, a simulated droplet contamination of MRSA--such as in a sneeze or a splash—was killed on copper and copper alloy surfaces within 90 minutes.
The new study showed that the elimination of contamination of surfaces via finger was even faster, with a 5-log reduction of a hardy epidemic strain of MRSA (EMRSA-16) observed following 10 minutes of contact with copper, and 4-log reduction observed on copper nickel and cartridge brass alloys within 15 minutes. The researchers also found that bacterial respiration was compromised on the copper surfaces, and that superoxide ROS were generated as part of the killing mechanism. The study was published in the April 2016 issue of Applied and Environmental Microbiology.
“Our latest research shows that in simulated fingertip contamination of surfaces with millions of MRSA or MSSA, the cells can remain alive for long periods on non-antimicrobial surfaces – such as stainless steel – but are killed even more rapidly than droplet contamination on copper and copper alloys,” said lead author Sarah Warnes, PhD. “Exposure to copper damages the bacterial respiration and DNA, resulting in irreversible cell breakdown and death.”
“It’s important to understand the mechanism of copper’s antimicrobial efficacy because microorganisms have evolved various mechanisms to convey resistance to disinfectants and antibiotics,” added study co-author Professor Bill Keevil, PhD. “Our work shows that copper targets various cellular sites, not only killing bacterial and viral pathogens, but also rapidly destroying their nucleic acid genetic material so there is no chance of mutation occurring and nothing to pass on to other microbes, a process called horizontal gene transfer. Consequently, this helps prevent breeding the next generation of superbug.”
Related Links:
University of Southampton
Latest Critical Care News
- Cutting-Edge Bioelectronic Device Offers Drug-Free Approach to Managing Bacterial Infections
- Early TAVR Benefits Patients with Asymptomatic Severe Aortic Stenosis
- Sophisticated Machine-Learning Approach Uses Patient EHRs to Predict Pneumonia Outcomes
- First-Of-Its-Kind Experimental Therapy Enhances Tissue Repair After Heart Attack
- AI Model Predicts Patients at Most Risk of Complication During Treatment for Advanced Kidney Failure
- AI Model Predicts Patients’ Risk of Developing and Worsening Disease from ECGs
- Grain-Sized Soft Robots Controlled by Magnetic Fields Deliver Medical Drugs
- AI Tool Helps Identify Heart Failure Risk in Diabetes Patients
- Inflammation Reducing Antibody Could Serve as Cardio-Immunotherapy for Heart Failure Patients
- AI Tool Accurately Identifies Patients Who Could Require Emergency Hospital Admission
- Simple Risk Score Model Helps Wean Patients from Mechanical Circulatory Support
- AI-Powered Wearable Camera System Detects Errors in Medication Delivery
- Re-Engineered Immune Cells Penetrate and Kill Solid Tumors
- New Nanoparticle Nanotherapy Infusion Cleans Arteries
- Fluorescence Imaging a Game-Changer for Bedside Biofilm Detection
- Spongelike Bandage with Antimicrobial Efficacy Stops Hemorrhaging and Mitigates Risk of Infection