HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Electric Anti-Viral Face Mask Eradicates Coronavirus Upon Contact

By HospiMedica International staff writers
Posted on 26 Jun 2020
Print article
Image: Electric Anti-Viral Face Mask (Photo courtesy of Chandan Sen)
Image: Electric Anti-Viral Face Mask (Photo courtesy of Chandan Sen)
Researchers from the Indiana University (Bloomington, IN, USA) have demonstrated for the first time that coronaviruses are killed upon exposure to an electroceutical fabric.

"Electroceutical" refers to a matrix of embedded microcell batteries that creates an electric field and wirelessly generates a low level of electricity in the presence of moisture. Coronaviruses rely on electrostatic interactions to be able to attach to their host and assemble themselves into an infective form. Their structure must remain stable in order to spread infection. The electroceutical surface technology, called V.Dox Technology, is a proprietary dot-matrix pattern of embedded microcell batteries that create an electric field and wirelessly generate a low level of electricity when moist.

Their research results demonstrated that the ability of the virus to infect is fully eliminated within one minute of contact with the fabric, which disrupts the electrostatic forces the virus needs. The data shows that coronaviruses are killed by exposure to the low-level electric field-generating fabric, which is currently in use as a broad-spectrum antimicrobial wound care dressing. The electroceutical technology offers clinicians a non-antibiotic solution for infection risk reduction and potentially increases its value for use in face masks and possibly other surface treatments. The immediate goal with the data findings is to receive approval through the FDA's Emergency Use Authorization program to apply use of the fabric specifically for face masks in the fight against COVID-19.

"This work presents the first evidence demonstrating that the physical characteristic features of coronaviruses may be exploited to render them non-infective following contact with low-level electric field-generating electroceutical fabric," said Chandan Sen, principal author of the study and director of the Indiana Center for Regenerative Medicine and Engineering at the IU School of Medicine. "Our hope is that these findings will help Vomaris receive FDA Emergency Use Authorization and that we can utilize this fabric widely in the fight against COVID-19, ultimately saving lives."

Related Links:
Indiana University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Double Door Pharmacy Refrigerator
iPR256-GX
New
Mattress Replacement System
Apollo Infant Dynamic

Print article

Channels

Critical Care

view channel
Image: The Atmo Gas Capsule measures gases as it travels through the GI tract and transmits the data wirelessly (Photo courtesy of Atmo Biosciences)

Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market

Intestinal gases are associated with several health conditions, including colon cancer, irritable bowel syndrome, and inflammatory bowel disease, and they have the potential to serve as crucial biomarkers... Read more

Surgical Techniques

view channel
Image: The Elana Heart Bypass System is designed to make suturing obsolete (Photo courtesy of AMT Medical)

Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures

In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more