We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Innovative Biodegradable Alloy Advances Bone Implants

By HospiMedica International staff writers
Posted on 16 Jul 2020
Print article
Image: Dr. Alexander Komissarov testing the magnesium, gallium, and zinc alloy (Photo courtesy of NUST-MISiS)
Image: Dr. Alexander Komissarov testing the magnesium, gallium, and zinc alloy (Photo courtesy of NUST-MISiS)
A new bioresorbable alloy based on magnesium, gallium, and zinc can be used to make temporary implants for the treatment of fractures, osteoporosis, and myeloma.

Developed at the Russian National University of Science and Technology (NUST-MISiS; Moscow, Russia), Monash University (Melbourne, Australia), and other institutions, the new bioresorbable alloy takes advantage of the efficacy of gallium in inhibiting bone resorption, osteoporosis, Paget's disease, and other illnesses. The alloy is intended for use in the manufacture of temporary implants for the treatment of fractures, and the restoration of surgically removed bone due to pathologies.

A severe plastic deformation technique of equal channel angular pressing (ECAP) provides the alloy with favorable mechanical properties and a low rate of degradation and biocorrosion, in contrast to alloys that are based largely on magnesium. As result, it does not undergo a rapid decomposition process in the environment of the human body, and retains its supporting functions throughout the healing process. The study was published on May 12, 2020, in the Journal of Magnesium and Alloys.

“Gallium is known as an ‘inhibitor’ of bone resorption, it is effective in treating disorders associated with accelerated bone loss,” said Alexander Komissarov, PhD, head of the Hybrid Nanostructured Materials Laboratory at NUST MISIS. “Gallium is also involved in biochemical regeneration processes, increasing the thickness, strength, and mineral content of the bone. Finally, it has an antibacterial effect, which is especially important in implantology.”

Gallium is predominantly used in electronics. And although gallium it has no natural function in biology, gallium ions interact with processes in the body in a manner similar to iron (Fe). The body therefore handles Gallium as though it were Fe3+, and the ion is bound in areas of inflammation, such as infection, and in areas of rapid cell division. It is also used in nuclear medicine imaging radiopharmaceutical agents (Gallium scan), such as the radioactive isotope 67Ga.

Related Links:
Russian National University of Science and Technology
Monash University


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Mobile Digital X-Ray System
SOLTUS 500

Print article

Channels

Critical Care

view channel
Image: A full readout from the new AI algorithm that helps read EEGs (Photo courtesy of Duke University)

AI Doubles Medical Professionals’ Accuracy in Reading EEG Charts of ICU Patients

Electroencephalography (EEG) readings are crucial for detecting when unconscious patients may be experiencing or are at risk of seizures. EEGs involve placing small sensors on the scalp to measure the... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more