Machine Learning-Based Rapid Diagnostic Reads Immune System to Predict COVID-19 Severity Risk
|
By HospiMedica International staff writers Posted on 30 Sep 2020 |

Image: Machine Learning-Based Rapid Diagnostic Reads Immune System to Predict COVID-19 Severity Risk (Photo courtesy of Inflammatix)
A rapid diagnostic that reads the immune system to predict severe respiratory failure risk in COVID-19 patients is being developed to help physicians make better hospital admission and resourcing decisions for COVID-19 patients at hospital presentation.
Inflammatix (Burlingame, CA, USA) has been awarded USD 1.1 million by the Defense Advanced Research Projects Agency (DARPA) for further development of the rapid diagnostic named CoVerity COVID-19 Severity Test. The Inflammatix approach – known as host-response diagnostics – rapidly reads the immune system using multiple mRNA biomarkers and a machine learning algorithm. The company is developing other host-response diagnostic tests that identify the presence and type of infection (viral or bacterial), in addition to predicting the risk of severe disease, to enable physicians to make more informed decisions for patients with acute infection and sepsis.
The company’s host-response diagnostic approach for predicting COVID-19 severity risk was shown to be superior to clinical biomarkers, including IL-6, in a new study presented recently at the 2020 European Society of Clinical Microbiology and Infection Diseases (ESCMID) Conference on Coronavirus Disease (ECCVID). In a prospective study of 97 patients with PCR-confirmed SARS-CoV-2 pneumonia and blood drawn on the day of hospital admission, CoVerity demonstrated an area under the receiver operating characteristic curve (AUROC) of 0.88 (95% CI 0.81-0.95) for identifying patients who developed respiratory failure or died, independent of age, while IL-6 had an AUROC of 0.73 (95% CI 0.62 - 0.85). The new classifier had the highest accuracy among all single biomarkers tested, including IL-6, procalcitonin, C-reactive protein, lactate, and SuPAR.
“While major progress has been made in developing rapid platforms to diagnose SARS-CoV-2 infection, predicting severity in COVID-19 patients remains an unmet medical need,” said Evangelos J. Giamarellos-Bourboulis, MD, Professor of Internal Medicine and Infectious Diseases at ATTIKON University General Hospital in Athens, Greece, Chairman of the European Sepsis Alliance, President of the European Shock Society, and lead investigator for the study. “In this study, the host-response approach demonstrated very high accuracy for identifying severe disease in COVID-19 patients and outperformed clinical markers for risk stratification. Existing tools have shown limited accuracy in enabling us to confidently identify high-risk patients early who need close monitoring or discharge non-severe patients to recover at home.”
“We are grateful that DARPA has recognized the promise of our host-response approach to benefit COVID-19 patients and caregivers, and we look forward to accelerating development and availability of our CoVerity COVID-19 Severity Test as a result of this agreement,” said Inflammatix CEO and Cofounder Tim Sweeney, MD, PhD. “The 5-mRNA classifier for CoVerity was developed on a training set of more than 20 clinical studies and we intend to translate it into a rapid assay that can be used as a clinical tool to help triage patients after diagnosis with COVID-19. Improved triage has the potential to reduce morbidity and mortality while enabling hospitals to allocate resources more effectively.”
Related Links:
Inflammatix
Inflammatix (Burlingame, CA, USA) has been awarded USD 1.1 million by the Defense Advanced Research Projects Agency (DARPA) for further development of the rapid diagnostic named CoVerity COVID-19 Severity Test. The Inflammatix approach – known as host-response diagnostics – rapidly reads the immune system using multiple mRNA biomarkers and a machine learning algorithm. The company is developing other host-response diagnostic tests that identify the presence and type of infection (viral or bacterial), in addition to predicting the risk of severe disease, to enable physicians to make more informed decisions for patients with acute infection and sepsis.
The company’s host-response diagnostic approach for predicting COVID-19 severity risk was shown to be superior to clinical biomarkers, including IL-6, in a new study presented recently at the 2020 European Society of Clinical Microbiology and Infection Diseases (ESCMID) Conference on Coronavirus Disease (ECCVID). In a prospective study of 97 patients with PCR-confirmed SARS-CoV-2 pneumonia and blood drawn on the day of hospital admission, CoVerity demonstrated an area under the receiver operating characteristic curve (AUROC) of 0.88 (95% CI 0.81-0.95) for identifying patients who developed respiratory failure or died, independent of age, while IL-6 had an AUROC of 0.73 (95% CI 0.62 - 0.85). The new classifier had the highest accuracy among all single biomarkers tested, including IL-6, procalcitonin, C-reactive protein, lactate, and SuPAR.
“While major progress has been made in developing rapid platforms to diagnose SARS-CoV-2 infection, predicting severity in COVID-19 patients remains an unmet medical need,” said Evangelos J. Giamarellos-Bourboulis, MD, Professor of Internal Medicine and Infectious Diseases at ATTIKON University General Hospital in Athens, Greece, Chairman of the European Sepsis Alliance, President of the European Shock Society, and lead investigator for the study. “In this study, the host-response approach demonstrated very high accuracy for identifying severe disease in COVID-19 patients and outperformed clinical markers for risk stratification. Existing tools have shown limited accuracy in enabling us to confidently identify high-risk patients early who need close monitoring or discharge non-severe patients to recover at home.”
“We are grateful that DARPA has recognized the promise of our host-response approach to benefit COVID-19 patients and caregivers, and we look forward to accelerating development and availability of our CoVerity COVID-19 Severity Test as a result of this agreement,” said Inflammatix CEO and Cofounder Tim Sweeney, MD, PhD. “The 5-mRNA classifier for CoVerity was developed on a training set of more than 20 clinical studies and we intend to translate it into a rapid assay that can be used as a clinical tool to help triage patients after diagnosis with COVID-19. Improved triage has the potential to reduce morbidity and mortality while enabling hospitals to allocate resources more effectively.”
Related Links:
Inflammatix
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Critical Care
view channel
Light-Based Technology to Measure Brain Blood Flow Could Diagnose Stroke and TBI
Monitoring blood flow in the brain is crucial for diagnosing and treating neurological conditions such as stroke, traumatic brain injury (TBI), and vascular dementia. However, current imaging methods like... Read more
AI Heart Attack Risk Assessment Tool Outperforms Existing Methods
For decades, doctors have relied on standardized scoring systems to assess patients with the most common type of heart attack—non-ST-elevation acute coronary syndrome (NSTE-ACS). The GRACE score, used... Read moreSurgical Techniques
view channel
Minimally Invasive Endoscopic Surgery Improves Severe Stroke Outcomes
Intracerebral hemorrhage, a type of stroke caused by bleeding deep within the brain, remains one of the most challenging neurological emergencies to treat. Accounting for about 15% of all strokes, it carries... Read more
Novel Glue Prevents Complications After Breast Cancer Surgery
Seroma and prolonged lymphorrhea are among the most common complications following axillary lymphadenectomy in breast cancer patients. These postoperative issues can delay recovery and postpone the start... Read morePatient Care
view channel
Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care
More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more
VR Training Tool Combats Contamination of Portable Medical Equipment
Healthcare-associated infections (HAIs) impact one in every 31 patients, cause nearly 100,000 deaths each year, and cost USD 28.4 billion in direct medical expenses. Notably, up to 75% of these infections... Read more
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read moreFirst-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read moreBusiness
view channel
Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies
Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
B. Braun Acquires Digital Microsurgery Company True Digital Surgery
The high-end microsurgery market in neurosurgery, spine, and ENT is undergoing a significant transformation. Traditional analog microscopes are giving way to digital exoscopes, which provide improved visualization,... Read more
CMEF 2025 to Promote Holistic and High-Quality Development of Medical and Health Industry
The 92nd China International Medical Equipment Fair (CMEF 2025) Autumn Exhibition is scheduled to be held from September 26 to 29 at the China Import and Export Fair Complex (Canton Fair Complex) in Guangzhou.... Read more








