Mathematical Model Could Help Clinicians to Safely Allow Two COVID-19 Patients to Share Single Ventilator
By HospiMedica International staff writers Posted on 29 Jan 2021 |

Image: Simple RC network model of ventilator system and patient, with linear resistance (Rv) and compliance (Cv) for the ventilator tubing system, and linear resistance (R) and compliance (C) for the patient (Photo courtesy of University of Bath)
A team of engineers have developed a mathematical model that could help clinicians to safely allow two COVID-19 patients to share a single ventilator.
Members of the University of Bath’s Centre for Therapeutic Innovation and Centre for Power Transmission and Motion Control (Bath, England) have published a first-of-its-kind research paper on dual-patient ventilation (DPV), following their work which began during the first wave of the SARS-CoV-2 virus in March 2020. DPV presents several challenges: accurate identification of patients' lung characteristics over time; close matching of patients suitable to be ventilated together, and the risk of lung damage if airflow is not safely maintained. The BathRC model enables doctors to calculate the amount of restriction required to safely ventilate two patients using one ventilator.
As a practice, DPV is strongly advised against by healthcare bodies given the potential for lung damage, and the team stresses that their findings should only be used in extreme situations where patients outnumber available equipment. No testing has been carried out on patients, instead the research so far has taken place using artificial lungs, normally used to calibrate ventilators. The model equates the ventilator circuit to an electrical circuit with resistance and compliance considered equivalent to electrical resistance and capacitance; this enabled a simple calculator to be created.
While DPV has been previously attempted during the COVID-19 pandemic, the paper is the first to provide clinicians with the calculations needed to safely ventilate two patients with one machine. The model is able to predict tidal lung volumes accurate to within 4%. In addition to further testing, some hurdles remain before clinicians could safely attempt dual-patient ventilation using the BathRC model. The team plans to publish further research soon into how to create an adjustable airflow restrictor.
"We are not advocating dual-patient ventilation, but in extreme situations in parts of the world, it may be the only option available as a last resort. The COVID-19 crisis presents a potential risk of hospitals running short of ventilators, so it is important we explore contingencies, such as how to maximize capacity," said Professor Richie Gill, Co-Vice Chair of the Centre for Therapeutic Innovation and the project's principal investigator. "This isn't something we'd envisage being needed for critical-care patients. However, one of the issues with COVID is that people can need ventilation for several weeks. If you could ventilate two recovering patients with one machine it could free up another for someone in critical need."
Related Links:
University of Bath
Members of the University of Bath’s Centre for Therapeutic Innovation and Centre for Power Transmission and Motion Control (Bath, England) have published a first-of-its-kind research paper on dual-patient ventilation (DPV), following their work which began during the first wave of the SARS-CoV-2 virus in March 2020. DPV presents several challenges: accurate identification of patients' lung characteristics over time; close matching of patients suitable to be ventilated together, and the risk of lung damage if airflow is not safely maintained. The BathRC model enables doctors to calculate the amount of restriction required to safely ventilate two patients using one ventilator.
As a practice, DPV is strongly advised against by healthcare bodies given the potential for lung damage, and the team stresses that their findings should only be used in extreme situations where patients outnumber available equipment. No testing has been carried out on patients, instead the research so far has taken place using artificial lungs, normally used to calibrate ventilators. The model equates the ventilator circuit to an electrical circuit with resistance and compliance considered equivalent to electrical resistance and capacitance; this enabled a simple calculator to be created.
While DPV has been previously attempted during the COVID-19 pandemic, the paper is the first to provide clinicians with the calculations needed to safely ventilate two patients with one machine. The model is able to predict tidal lung volumes accurate to within 4%. In addition to further testing, some hurdles remain before clinicians could safely attempt dual-patient ventilation using the BathRC model. The team plans to publish further research soon into how to create an adjustable airflow restrictor.
"We are not advocating dual-patient ventilation, but in extreme situations in parts of the world, it may be the only option available as a last resort. The COVID-19 crisis presents a potential risk of hospitals running short of ventilators, so it is important we explore contingencies, such as how to maximize capacity," said Professor Richie Gill, Co-Vice Chair of the Centre for Therapeutic Innovation and the project's principal investigator. "This isn't something we'd envisage being needed for critical-care patients. However, one of the issues with COVID is that people can need ventilation for several weeks. If you could ventilate two recovering patients with one machine it could free up another for someone in critical need."
Related Links:
University of Bath
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Critical Care
view channel
Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
Intestinal gases are associated with several health conditions, including colon cancer, irritable bowel syndrome, and inflammatory bowel disease, and they have the potential to serve as crucial biomarkers... Read more
Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
Multiphoton microscopy has become an invaluable tool in neuroscience, allowing researchers to observe brain activity in real time with high-resolution imaging. A crucial aspect of many multiphoton microscopy... Read more
Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read moreSurgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more