Machine Vision-Based Blood Analyzer Supports Validation of AI-based COVID Screening System
By HospiMedica International staff writers Posted on 15 Mar 2021 |

Image: Sight OLO (Photo courtesy of Sight Diagnostics)
A machine vision-based blood analyzer has been made part of an assessment of an AI-based test to rapidly screen for COVID-19 in patients arriving in emergency departments.
Sight Diagnostics (Tel Aviv, Israel) has deployed Sight OLO at the John Radcliffe Hospital - part of the Oxford University Hospitals NHS Foundation Trust (Oxford, UK) that allows rapid FBC testing, in minutes, for patients attending the emergency departments and is supporting validation of a rapid AI triage system for COVID-19. Sight OLO enables faster predictions to be generated by Oxford University’s ‘CURIAL AI’ screening test, which leverages patients’ routine vital signs and FBC results to predict the likelihood of a patient having COVID-19.
Developed by a cross-disciplinary team at Oxford University, the CURIAL algorithm has proven to be an effective triage tool that can rule-out COVID-19 within the first hour of patients coming to the hospital. Polymerase Chain Reaction (PCR) tests typically have a turnaround time of 12-48 hours and require specialist equipment and staff, while the more rapid lateral flow assays and antigen tests have produced mixed efficacy results. With CURIAL, Sight OLO could allow staff in emergency rooms to receive an accurate prediction to rule-out COVID-19 in under 30 minutes. About the size of a toaster oven, Sight OLO is compact and uses a cartridge-based system that does not require external reagents or routine calibration and maintenance, making it simple to set-up and operate wherever FBC is needed.
“Having accurate FBC results in minutes, from OLO, would help CURIAL make predictions even sooner, potentially reducing care delays and supporting infection control within hospitals. Our goal is to get the right treatment to patients sooner by helping rule-out Covid at triage for a majority of patients who don’t have the infection,” said Dr. Andrew Soltan, an Academic Clinician and a Machine Learning Researcher at Oxford University. “This project shows that artificial intelligence can work with rapid diagnostics to help us select the best care pathways and minimize risks of spreading the infection in hospitals.”
“We’re proud to collaborate with a cutting-edge institution like Oxford University on their CURIAL analysis program to help manage the effects of the pandemic,” said Yossi Pollak, CEO and Co-founder of Sight Diagnostics. “We see time and again when FBC results are made available to clinicians quickly and easily, patient care models are reconfigured for the better. The CURIAL project is a beacon of what’s possible, and we are keen to support other health institutions by enabling access to fast, convenient and accurate FBC through OLO.”
Related Links:
Oxford University Hospitals NHS Foundation Trust
Sight Diagnostics
Sight Diagnostics (Tel Aviv, Israel) has deployed Sight OLO at the John Radcliffe Hospital - part of the Oxford University Hospitals NHS Foundation Trust (Oxford, UK) that allows rapid FBC testing, in minutes, for patients attending the emergency departments and is supporting validation of a rapid AI triage system for COVID-19. Sight OLO enables faster predictions to be generated by Oxford University’s ‘CURIAL AI’ screening test, which leverages patients’ routine vital signs and FBC results to predict the likelihood of a patient having COVID-19.
Developed by a cross-disciplinary team at Oxford University, the CURIAL algorithm has proven to be an effective triage tool that can rule-out COVID-19 within the first hour of patients coming to the hospital. Polymerase Chain Reaction (PCR) tests typically have a turnaround time of 12-48 hours and require specialist equipment and staff, while the more rapid lateral flow assays and antigen tests have produced mixed efficacy results. With CURIAL, Sight OLO could allow staff in emergency rooms to receive an accurate prediction to rule-out COVID-19 in under 30 minutes. About the size of a toaster oven, Sight OLO is compact and uses a cartridge-based system that does not require external reagents or routine calibration and maintenance, making it simple to set-up and operate wherever FBC is needed.
“Having accurate FBC results in minutes, from OLO, would help CURIAL make predictions even sooner, potentially reducing care delays and supporting infection control within hospitals. Our goal is to get the right treatment to patients sooner by helping rule-out Covid at triage for a majority of patients who don’t have the infection,” said Dr. Andrew Soltan, an Academic Clinician and a Machine Learning Researcher at Oxford University. “This project shows that artificial intelligence can work with rapid diagnostics to help us select the best care pathways and minimize risks of spreading the infection in hospitals.”
“We’re proud to collaborate with a cutting-edge institution like Oxford University on their CURIAL analysis program to help manage the effects of the pandemic,” said Yossi Pollak, CEO and Co-founder of Sight Diagnostics. “We see time and again when FBC results are made available to clinicians quickly and easily, patient care models are reconfigured for the better. The CURIAL project is a beacon of what’s possible, and we are keen to support other health institutions by enabling access to fast, convenient and accurate FBC through OLO.”
Related Links:
Oxford University Hospitals NHS Foundation Trust
Sight Diagnostics
Latest COVID-19 News
- Low-Cost System Detects SARS-CoV-2 Virus in Hospital Air Using High-Tech Bubbles
- World's First Inhalable COVID-19 Vaccine Approved in China
- COVID-19 Vaccine Patch Fights SARS-CoV-2 Variants Better than Needles
- Blood Viscosity Testing Can Predict Risk of Death in Hospitalized COVID-19 Patients
- ‘Covid Computer’ Uses AI to Detect COVID-19 from Chest CT Scans
- MRI Lung-Imaging Technique Shows Cause of Long-COVID Symptoms
- Chest CT Scans of COVID-19 Patients Could Help Distinguish Between SARS-CoV-2 Variants
- Specialized MRI Detects Lung Abnormalities in Non-Hospitalized Long COVID Patients
- AI Algorithm Identifies Hospitalized Patients at Highest Risk of Dying From COVID-19
- Sweat Sensor Detects Key Biomarkers That Provide Early Warning of COVID-19 and Flu
- Study Assesses Impact of COVID-19 on Ventilation/Perfusion Scintigraphy
- CT Imaging Study Finds Vaccination Reduces Risk of COVID-19 Associated Pulmonary Embolism
- Third Day in Hospital a ‘Tipping Point’ in Severity of COVID-19 Pneumonia
- Longer Interval Between COVID-19 Vaccines Generates Up to Nine Times as Many Antibodies
- AI Model for Monitoring COVID-19 Predicts Mortality Within First 30 Days of Admission
- AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans
Channels
Critical Care
view channel
Ingestible Smart Capsule for Chemical Sensing in the Gut Moves Closer to Market
Intestinal gases are associated with several health conditions, including colon cancer, irritable bowel syndrome, and inflammatory bowel disease, and they have the potential to serve as crucial biomarkers... Read more
Novel Cannula Delivery System Enables Targeted Delivery of Imaging Agents and Drugs
Multiphoton microscopy has become an invaluable tool in neuroscience, allowing researchers to observe brain activity in real time with high-resolution imaging. A crucial aspect of many multiphoton microscopy... Read more
Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read moreSurgical Techniques
view channel
Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures
In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read morePatient Care
view channel
Portable Biosensor Platform to Reduce Hospital-Acquired Infections
Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more