We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Optical Sensor Could Help Fight Bacterial Infections

By HospiMedica International staff writers
Posted on 21 Sep 2016
Print article
Image: Scanning electron miocrographs (SEMs) showing bacterial binding on the sensor surface at different bacterial concentrations (Photo courtesy of IITK).
Image: Scanning electron miocrographs (SEMs) showing bacterial binding on the sensor surface at different bacterial concentrations (Photo courtesy of IITK).
A new sensor can detect the potentially deadly E.coli bacteria in just 15-20 minutes, much faster than traditional laboratory tests.

Developed by researchers at the University of Quebec (UQO; Outaouais, Canada) and the Indian Institute of Technology Kanpur (IITK; India), the sensor is based on bacteriophages bonded to the surface of a germanio-silicate optical fiber via long-period fiber grating (LPFG). The sensor tip is placed in the tissue sample, where the bacteriophages latch onto lingering bacteria. When a beam of light strikes the surface, the presence of E.coli shifts the wavelength, a telltale sign of contamination. The overall length of the sensor is about 3.6 cm, making it suitable for bio-sensing applications.

The sensor uses a novel and cost-effective method to compensate for the temperature-induced phase changes of LPFGs by selective excitation of the cladding modes of opposite dispersion characteristics. The resultant sensor is extremely sensitive to changes in ambient refractive indices, with a sensitivity of 1929 nm/RIU, over the ambient refractive index (ARI) range, and is capable of detecting an index variation of ∼5×10−6 RIU in the ARI with a negligible temperature sensitivity over a temperature variation of 40°C. The study was published in the September 15, 2016, issue of Optics Letters.

“Pathogenic bacterial infection is one of the biggest causes of death, and a fast response time is much needed for timely detection and subsequent cure of bacterial infection,” said study co-author physicist Saurabh Mani Tripathi, PhD, of IITK. “I'm excited by the very low time [our sensor needs] to accurately detect the presence of E. coli bacteria in water collected from environments at different temperatures.

“The temperature insensitivity makes the sensor more practical for outdoor applications, like on-site monitoring of water reservoirs. The food industry and pathology labs are other possible users of the new sensors; the sensor can be modified to detect other strains of bacteria by changing the bacteriophage,” concluded Dr. Tripathi. “Using currently available technologies, which are mostly based on amplification of the sample, it takes several hours to days to detect the presence of bacteria. A fast and accurate detection alternative is, therefore, preferable over the existing technology.”

Related Links:
University of Quebec
Indian Institute of Technology Kanpur
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Compact C-Arm
Arcovis DRF-C S21

Print article

Channels

Surgical Techniques

view channel
Image: NeuroBlate NB3 FullFire 1.6mm laser probe is meant for use with the NeuroBlate System (Photo courtesy of Monteris Medical)

World’s Smallest Laser Probe for Brain Procedures Facilitates Ablation of Full Range of Targets

A new probe enhances the ablation capabilities for a broad spectrum of oncology and epilepsy targets, including pediatric applications, by incorporating advanced laser and cooling technologies to support... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more