HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Optical Sensor Could Help Fight Bacterial Infections

By HospiMedica International staff writers
Posted on 21 Sep 2016
Print article
Image: Scanning electron miocrographs (SEMs) showing bacterial binding on the sensor surface at different bacterial concentrations (Photo courtesy of IITK).
Image: Scanning electron miocrographs (SEMs) showing bacterial binding on the sensor surface at different bacterial concentrations (Photo courtesy of IITK).
A new sensor can detect the potentially deadly E.coli bacteria in just 15-20 minutes, much faster than traditional laboratory tests.

Developed by researchers at the University of Quebec (UQO; Outaouais, Canada) and the Indian Institute of Technology Kanpur (IITK; India), the sensor is based on bacteriophages bonded to the surface of a germanio-silicate optical fiber via long-period fiber grating (LPFG). The sensor tip is placed in the tissue sample, where the bacteriophages latch onto lingering bacteria. When a beam of light strikes the surface, the presence of E.coli shifts the wavelength, a telltale sign of contamination. The overall length of the sensor is about 3.6 cm, making it suitable for bio-sensing applications.

The sensor uses a novel and cost-effective method to compensate for the temperature-induced phase changes of LPFGs by selective excitation of the cladding modes of opposite dispersion characteristics. The resultant sensor is extremely sensitive to changes in ambient refractive indices, with a sensitivity of 1929 nm/RIU, over the ambient refractive index (ARI) range, and is capable of detecting an index variation of ∼5×10−6 RIU in the ARI with a negligible temperature sensitivity over a temperature variation of 40°C. The study was published in the September 15, 2016, issue of Optics Letters.

“Pathogenic bacterial infection is one of the biggest causes of death, and a fast response time is much needed for timely detection and subsequent cure of bacterial infection,” said study co-author physicist Saurabh Mani Tripathi, PhD, of IITK. “I'm excited by the very low time [our sensor needs] to accurately detect the presence of E. coli bacteria in water collected from environments at different temperatures.

“The temperature insensitivity makes the sensor more practical for outdoor applications, like on-site monitoring of water reservoirs. The food industry and pathology labs are other possible users of the new sensors; the sensor can be modified to detect other strains of bacteria by changing the bacteriophage,” concluded Dr. Tripathi. “Using currently available technologies, which are mostly based on amplification of the sample, it takes several hours to days to detect the presence of bacteria. A fast and accurate detection alternative is, therefore, preferable over the existing technology.”

Related Links:
University of Quebec
Indian Institute of Technology Kanpur
Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Ultra Low Floor Level Bed
Solite Pro

Print article

Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more