We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Novel Stitching Instrument Mimics Surgeon Hand Movement

By HospiMedica International staff writers
Posted on 09 Mar 2017
Print article
Image: The FlexdDex device enhances surgical suturing (Photo courtesy of FlexDex Surgical).
Image: The FlexdDex device enhances surgical suturing (Photo courtesy of FlexDex Surgical).
A simple, ergonomic all-mechanical device that mounts to the surgeon's arm mimics the direction of movement of their hand.

Developed by researchers at the University of Michigan, the FlexDex device is designed to precisely translate the surgeon’s hand, wrist, and arm movements from outside the patient into corresponding movements of an end-effector unit inside the patient's body. The purely mechanical instrument is based on the concept of a "virtual center" which locates the device's center of rotation at the same point as the surgeon's wrist.

“This is the culmination of 10 years of effort, and to know that the device is performing exactly as we expected it would, impacting patients' lives in a positive way - it's an amazing feeling. We always saw the potential, but now it's crystallized,” said pediatric surgeon Jim Geiger, MD, of U-M Medical School, and co-founder of FlexDex. “If I move my hand up, the device tip goes up. Wherever I move my hand, the tip of this instrument follows. No other instrument currently on the market operates like this.”

“FlexDex provides the functionality of robots at the cost of traditional hand-held laparoscopic instruments. It's kind of like the transition from mainframe computers to smartphones. You hardly need a manual to use it. It's just intuitive,” said mechanical engineering Professor Shorya Awtar, PhD, co-founder of FlexDex. “Our mission is to democratize minimally invasive surgery and expand its use around the U.S. and the world.”

FlexDex's core technology is the outcome of basic research and innovations in parallel kinematics, virtual center of rotation, and flexure mechanisms undertaken at the U-M Precision Systems Design Laboratory. Professors Geiger and Awtar, who established the technology, have joined forces with medical device entrepreneur Greg Bowles to found FlexDex Surgical, in order to translate their research into commercial medical products.

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
X-Ray QA Meter
Piranha CT

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more