HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Copper Complex Halts Botulinum Neurotoxin Poisoning

By HospiMedica International staff writers
Posted on 12 Jun 2017
Print article
A new study describes how a readily available metal salt could provide a new therapy for Botulinum Neurotoxin type A (BoNT/A), the most common and deadly cause of human botulism.

Researchers at the Scripps Research Institute (TSRI; La Jolla, CA, USA), Boston University (MA, USA), and other institutions conducted a study that screened various triazole compounds against the BoNT/A light chain (LC) protease, a proteolytic enzyme that disrupts neuronal signaling to muscles. They found to their surprise that it was metal salts, and not the triazole compounds that showed marked inhibitory activity, and that copper cations in particular displayed noncompetitive inhibition of the LC, with mercury cations 10-fold more potent.

They then examined ligand-copper complexes in a cell-based model, and found that they too prevented BoNT/A cleavage of the endogenous protein substrate (SNAP-25) even at low μM concentrations. The researchers suggest that a bio-reductive mechanism caused an intracellular release of copper, which directly inhibited the BoNT/A protease. Further in-vivo experiments in rodents showed that copper (II) dithiocarbamate and bis(thiosemicarbazone) complexes could be used to treat the harmful effects of BoNT/A intoxication. The study was published on May 5, 2017, in JACS.

“Currently, botulism sufferers receive an anti-toxin medicine that can inactivate the toxin circulating in their system, thereby preventing further poisoning. However, the anti-toxin cannot reverse preexisting paralysis because the toxin acts inside cells,” said lead author Professor Kim Janda, PhD, of the TSRI department of chemistry. “Consequently, disease recovery can be slow, and paralysis may take weeks or months to wear off. This new therapy can readily enter cells where it can attack the etiological agent, a protease, which is responsible for paralysis seen from the neurotoxin.”

BoNT-A is probably best known as Botox, an injectable toxin commonly used to treat various movement disorders, such as focal dystonias, and in cosmetic treatments by paralyzing smooth muscles that cause wrinkles. It is also one of the most potent toxins on earth, and is classified as a potential bioterrorism threat, together with as Anthrax, Plague, Ebola, and other Category A priority pathogens.

Related Links:
Scripps Research Institute
Boston University
Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Acute Care Scale
PH-740

Print article

Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more