We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Origami-Inspired Robotic Arm Advances Endoscopic Surgery

By HospiMedica International staff writers
Posted on 15 Aug 2017
Print article
Image: A soft pop-up arm performing tissue counter-traction on a porcine stomach (Image courtesy of the Wyss Institute).
Image: A soft pop-up arm performing tissue counter-traction on a porcine stomach (Image courtesy of the Wyss Institute).
Multiple soft actuators can improve robotic arm distal dexterity by incorporating a rigid skeleton that pops up to assist in surgical procedures.

Under development at the Wyss Institute for Biologically Inspired Engineering (Boston, MA, USA), the hybrid manufacturing paradigm combines pop-up book microelectromechanical systems (MEMS) manufacturing with soft-lithographic techniques in order to produce millimeter-scale mechanisms with embedded sensing and user-defined distributed compliance. The hybrid soft pop-up actuators, which are powered by water pressure, are connected to the rigid components of the multi-articulated robotic arm with an irreversible chemical bond, without the need of any adhesive.

The multi-articulated robotic arm can then be integrated into current flexible endoscopes to improve distal dexterity and enable tissue retraction. Capacitive sensing is used to measure forces applied to the tissue, giving the surgeon a sense of where the arm is and how it's moving. The arm is also equipped with a suction cup--inspired by octopus tentacles--to safely interact with tissue. According to the researchers, the fabrication method allows for bulk manufacturing and also allows for increased levels of complexity for more sensing or actuation. The study was published on August 2, 2017, in Advanced Materials Technologies.

“The idea behind this technology is basically to obtain the best of both worlds, by combining soft robotic technologies with origami-inspired rigid structures,” said lead author Sheila Russo, PhD. “Using this fabrication method, we were able to design a device that can lie flat when the endoscope is navigating to the surgical area, and when the surgeon reaches the area they want to operate on, they can deploy a soft system that can safely and effectively interact with tissue.”

“The ability to seamlessly integrate gentle yet effective actuation into millimeter-scale deployable mechanisms fits naturally with a host of surgical procedures,” concluded senior author Professor Robert Wood, PhD, who developed pop-up fabrication. “We are focused on some of the more challenging endoscopic techniques, where tool dexterity and sensor feedback are at a premium, and can potentially make the difference between success and failure.”

Related Links:
Wyss Institute for Biologically Inspired Engineering

Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Multilevel Self-Loading Stretcher
CARRERA XL

Print article

Channels

Critical Care

view channel
Image: AI can be as good as a physician at prioritizing which patients need to be seen first (Photo courtesy of 123RF)

AI Can Prioritize Emergecny Department Patients Requiring Urgent Treatment

Emergency departments across the world are facing severe overcrowding and excessive demands, but a new study indicates that artificial intelligence (AI) might soon assist in prioritizing patients who require... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more