HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Sensor-Enhanced Robot Enables Precision Spinal Surgery

By HospiMedica International staff writers
Posted on 03 Jan 2018
Print article
Image: Spine model with four pedicle screws for spine stabilization (Photo courtesy of Pascal Gugler).
Image: Spine model with four pedicle screws for spine stabilization (Photo courtesy of Pascal Gugler).
Augmented robotic technology provides a high-precision, sensor-based surgical device for spinal and neurosurgical interventions.

Under development by researchers at the University of Bern (Switzerland), Bern University Hospital (Inselspital; Switzerland), and the Swiss Center for Electronics and Microtechnology (CSEm; Neuchâtel, Switzerland), The sensor-enabled technology uses the complexity of vertebral anatomy as a map, allowing the robotic drill to sense the bone terrain. When combined with electromyography (EMG) neuro monitoring, the robot can avoid such obstacles as nerves and boundaries of the bone.

Thicker bone, thinner bone, and nerves are sensed with a super-human, robotic perception and verified at high speed by matching it to relevant imaging information established prior to the procedure. EMG data is then used as a crosscheck control loop to give early warning on the proximity of nerve tissue and overall integration of surgical robotic system. Once positioning is confirmed, the robotic drill uses force-density pose estimation to allow neurosurgeons to accurately place pedicle screws perfectly and with precision in every patient, every time.

“For the first time the neurosurgeon has real-time data on where the drilling instrument is during the procedure and the surgical robot acts with supreme accuracy, shutting down the drilling far sooner that a human operator could, thereby avoiding breakthrough or injury,” said Andreas Raabe, MD, of the department of neurosurgery at Inselspital. “This means potentially zero morbidity procedures with respect to pedicle screw misplacement. We see this as the future of spine surgery.”

The main challenge of manual spine stabilization using pedicle screws is the uneven terrain of vertebral bone, since functional articulation of the spine is only made possible by the complex shape and bone density composition of the vertebrae. Drilling and positioning a screw into a highly variable part of the spine, whether manually or with image guidance technologies, fails around 15%, with screw missing the central part of the vertebrae and extending out of the bone, in many cases to irritate surrounding tissue or nerves.

Related Links:
University of Bern
Bern University Hospital
Swiss Center for Electronics and Microtechnology
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Video Laryngoscope
SH-VL1

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more