We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Bitmap-Based 3D Printed Models Are More Accurate

By HospiMedica International staff writers
Posted on 16 Jul 2018
Print article
Image: A new method allows 3D models to be printed directly from the dataset (Photo courtesy of James Weaver).
Image: A new method allows 3D models to be printed directly from the dataset (Photo courtesy of James Weaver).
A new study describes how extremely detailed physical three-dimensional (3D) models can be generated directly from volumetric data stacks.

Developed by Isomics (Cambridge, MA, USA), the Max Planck Institute of Colloids and Interfaces (MPIKG; Potsdam, Germany), the Wyss Institute for Biologically Inspired Engineering (Boston, MA, USA), and other institutions, the new 3D modeling technique is designed to solve the problem of current .stl surface mesh file formats, which are created using traditional image thresholding and isosurface extraction. Since such workflows are extremely time consuming, the resulting 3D-printed models can fail to accurately depict anatomical details of interest.

The new method uses a bitmap-based workflow that does not require a data segmentation step, and thus capable of generating rapid and highly accurate physical models directly from volumetric data. The threshold-free approach bypasses isosurface creation and traditional mesh slicing algorithms, limited file sizes, and artificial filtering or obscuring of data. In addition, using binary bitmap slices as input to the 3D printers allows for physical rendering of functional gradients native to the volumetric data sets, such as stiffness and optical transparency, providing biomechanically accurate models. The study was published on June 1, 2018, in 3D Printing and Additive Manufacturing.

“By lowering barriers to the visualization of fine details in biorealistic 3D-printed models, we hope to broaden access to this technology for a wide range of medical professionals and patients,” concluded senior author James Weaver, PhD, of the Wyss Institute, and colleagues. “When combined with high-resolution biological imaging data, multi-material medical 3D printing has the potential to improve treatment, enhance communication, and open new research avenues in precision medicine.”

3D-printed models for pre-surgical planning are used in almost all surgical subspecialties, allowing for a precise planning and simulation of the surgical approach, incision, and hardware sizing and placement. Physical 3D models can also serve as cutting guides for resection and as templates for the shaping of reconstruction hardware, implants, and prostheses so as to fit a patient's anatomy. 3D printing can also capture patient variability for education and training and provide easily interpretable visual guides for improving doctor–patient communication.

Related Links:
Isomics
Max Planck Institute of Colloids and Interfaces
Wyss Institute for Biologically Inspired Engineering
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Autoclavable Camera System
Precision AC

Print article

Channels

Critical Care

view channel
Image: A machine learning tool can identify patients with rare, undiagnosed diseases years earlier (Photo courtesy of 123RF)

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

Patients suffering from rare diseases often endure extensive delays in receiving accurate diagnoses and treatments, which can lead to unnecessary tests, worsening health, psychological strain, and significant... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more