We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

AI Algorithm Predicts Chronic Conditions from CT Scans

By HospiMedica International staff writers
Posted on 17 Dec 2018
Print article
Image: AI algorithms can help identify early evidence of disease (Photo courtesy of Zebra Medical Imaging).
Image: AI algorithms can help identify early evidence of disease (Photo courtesy of Zebra Medical Imaging).
Artificial intelligence (AI) algorithms can take advantage of existing computed tomography (CT) data to identify patients at risk of osteoporotic fractures and cardiovascular disease (CVD).

The algorithms, developed by Zebra Medical Vision (Shefayim, Israel), are based on anonymized databases of medical images and clinical data that were used to train them to discover chronic diseases by automated imaging analysis. The Zebra algorithm engine can be deployed in both cloud and on-site configurations, and is designed to integrate into picture archiving and communication systems (PACS), radiological information systems (RIS), and electronic medical record (EMR) systems.

Two recent studies undertaken by Clalit Health Services (Tel Aviv, Israel), which owns and operates 1,500 primary care clinics and 14 hospitals in Israel, treating over 4 million patients, validated that the algorithms can successfully predict osteoporotic fractures and CVD. The first study involved a retrospective analysis of 48,227patients with abdominal CTs, in order to identify radiologic risk markers of major and hip-specific osteoporotic fractures. The results showed that Zebra-Med algorithms achieved equivalent risk-stratification to contemporary fracture risk assessment tool (FRAX) scoring system.

The second five-year retrospective study, which involved 14,135 patients with non-gated, unenhanced chest CT, examined the cardiovascular predictive power of the Zebra-Med automatic coronary calcium scoring (CCS) algorithm, found that it resulted in a net 4.5% increase in categorical risk-reclassification improvement. By employing the Zebra algorithms, overstretched radiology departments can increase efficiency. Both studies were presented at the 2018 Radiological Society of North America (RSNA) annual meeting, held during November 2018 in Chicago (IL, USA).

“While there are an increasing number of AI applications in imaging aiming to mimic and automate human radiologist reading, there is larger untapped potential in these imaging studies. One can use AI to extract predictive insights unavailable to date that support high-impact population health interventions to tackle chronic diseases,” said Professor Ran Balicer, MD, the head of Clalit’s Research Institute. “We are pleased with the results of these two groundbreaking research projects and are looking forward to get them into practice.”

Related Links:
Zebra Medical Vision
Clalit Health Services

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
X-Ray QA Meter
Piranha CT

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: NICO SPECTRA is only hand-held technology delivering blue light closer to target to enhance tissue fluorescence (Photo courtesy of NICO Corporation)

Handheld Device for Fluorescence-Guided Surgery a Game Changer for Removal of High-Grade Glioma Brain Tumors

Grade III or IV gliomas are among the most common and deadly brain tumors, with around 20,000 cases annually in the U.S. and 1.2 million globally. These tumors are very aggressive and tend to infiltrate... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more