We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Machine Learning Tool Accurately Predicts Prostate Cancer

By HospiMedica International staff writers
Posted on 01 Mar 2019
Print article
Researchers from the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and Keck School of Medicine at the University of Southern California (Los Angeles, CA, USA) have developed a machine-learning framework that can distinguish between low- and high-risk prostate cancer with greater precision than ever before. The framework is expected intended to help physicians, particularly radiologists, in identifying treatment options more accurately for prostate cancer patients, thereby reducing the need for unnecessary clinical intervention.

The standard methods currently being used to assess prostate cancer risk are multi-parametric magnetic resonance imaging (mpMRI), which detects prostate lesions, and the Prostate Imaging Reporting and Data System, version 2 (PI-RADS v2), a five-point scoring system that classifies lesions found on the mpMRI. These tools are intended to soundly predict the likelihood of clinically significant prostate cancer. However, PI-RADS v2 scoring is subjective and does not distinguish clearly between intermediate and malignant cancer levels (scores 3, 4, and 5), resulting in differing interpretations among clinicians most of the time.

In order to remedy this drawback, it has been proposed to combine machine learning with radiomics—a branch of medicine that uses algorithms to extract large amounts of quantitative characteristics from medical images. While other studies have only tested a limited number of machine learning methods to address this limitation, the Mount Sinai and USC researchers have developed a predictive framework that rigorously and systematically assessed many such methods to identify the best-performing one. The framework also leverages larger training and validation data sets than previous studies did, allowing the researchers to classify the patients’ prostate cancer with high sensitivity and an even higher predictive value.

“By rigorously and systematically combining machine learning with radiomics, our goal is to provide radiologists and clinical personnel with a sound prediction tool that can eventually translate to more effective and personalized patient care,” said Gaurav Pandey, PhD, Assistant Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai and senior corresponding author of the publication alongside co-corresponding author Bino Varghese, PhD, Assistant Professor of Research Radiology at the Keck School of Medicine at USC. “The pathway to predicting prostate cancer progression with high accuracy is ever improving, and we believe our objective framework is a much-needed advancement.”

Related Links:
Icahn School of Medicine at Mount Sinai
Keck School of Medicine at the University of Southern California

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Fiberoptic Laryngoscope Set
Satin

Print article

Channels

Critical Care

view channel
Image: The largest scale analysis compared longer-term percutaneous devices for aortic valve replacement versus surgery (Photo courtesy of Adobe Stock)

Transcatheter Valve Replacement Outcomes Similar To Surgery, Finds Study

A new study has shown that a minimally invasive procedure for replacing the aortic valve in the heart—known as transcatheter aortic valve replacement (TAVR)—is on par with the more traditional surgical... Read more

Surgical Techniques

view channel
Image: The AR tech allows for sub-millimeter accuracy, helping to potentially reduce risks (Photo courtesy of Medivis)

AR Surgical Technology Translates Complex 2D Medical Imaging to Enhance Accuracy

Surgeons often have to switch their focus between a patient’s data displayed on a screen or clipboard and the patient themselves during procedures. But that is about to change. Surgeons can now utilize... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more