We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

AI Improves Efficiency and Accuracy of Breast Cancer Imaging

By HospiMedica International staff writers
Posted on 12 Aug 2019
Print article
Image: Digital breast tomosynthesis compared to mammography  (Photo courtesy of Carestream Health).
Image: Digital breast tomosynthesis compared to mammography (Photo courtesy of Carestream Health).
Artificial intelligence (AI) can help shorten digital breast tomosynthesis (DBT) reading time while maintaining or improving accuracy, claims a new study.

Researchers at the University of Pennsylvania (UPENN: Philadelphia, PA, USA), iCAD (Nashua, NH, USA), and other institutions have developed a deep learning AI system that is capable of identifying suspicious soft-tissue and calcified lesions in DBT images. The system was trained on a large DBT data set, following which its performance was tested by having 24 radiologists, including 13 breast subspecialists, each read 260 DBT examinations with and without AI assistance. The examinations included 65 cancer cases.

The results revealed that radiologist performance for the detection of malignant lesions increased from 0.795 without AI to 0.852 with AI, while reading time decreased by 52.7%, from 64.1 seconds without to 30.4 seconds with AI. Sensitivity increased from 77% without AI to 85% with AI, specificity increased from 62.7% without to 69.6% with AI, and recall rate for non-cancers decreased from 38% without to 30.9% with AI. The study was published on July 31, 2019, in Radiology: Artificial Intelligence.

“Overall, readers were able to increase their sensitivity by eight percent, lower their recall rate by seven percent, and cut their reading time in half when using AI concurrently while reading DBT cases,” said lead author Professor Emily Conant, MD, chief of breast imaging at UPENN. “The concurrent use of AI with DBT increases cancer detection, and may bring reading times back to about the time it takes to read digital mammography alone.”

DBT acquires multiple images over a limited angular range to produce a set of reconstructed images, which can then be viewed individually or sequentially in a cine loop, and in a 3D image of the breast, which can viewed in narrow slices, similar to CT scans. While in conventional 2D mammography overlapping tissues can mask suspicious areas, 3D images eliminate the overlap, making abnormalities easier to recognize. It is estimated that 3D DBT will replace conventional mammography within ten years.

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
1.5T MRI System
uMR 670

Print article

Channels

Critical Care

view channel
Image: A machine learning tool can identify patients with rare, undiagnosed diseases years earlier (Photo courtesy of 123RF)

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

Patients suffering from rare diseases often endure extensive delays in receiving accurate diagnoses and treatments, which can lead to unnecessary tests, worsening health, psychological strain, and significant... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more