HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Colorimetric Bandages Identify and Treat Bacterial Infections

By HospiMedica International staff writers
Posted on 10 Feb 2020
Print article
Image: A color-changing bandage treats infections (Photo courtesy of CAS)
Image: A color-changing bandage treats infections (Photo courtesy of CAS)
Innovative color-changing bandages can sense drug-resistant and drug-sensitive bacteria in wounds and treat them accordingly, claims a new study.

Developed at the Chinese Academy of Sciences (CAS; Shenyang, China) and the University of Science and Technology of China (USTC; Hefei, China), the new paper-based bandaid (PBB) visually implements a selective antibacterial strategy. The PBB changes color from green to yellow when it contacts the acidic microenvironment of a bacterial infection; if drug-resistant bacteria are present, the bandage turns red in color through the action of an enzyme produced by the resistant microbes.

If an infection is detected, the PBB releases an antibiotic that kills drug-sensitive bacteria. When drug resistant bacteria are detected, Zr-MOF PCN-224-based photodynamic therapy (PDT) is used on the wound site to treat the resistant strains by releasing reactive oxygen species (ROS) that kill or weaken the bacteria, making them more susceptible to the antibiotic. The limit of detection is 104 CFU/mL for drug-resistant E. coli. The study was published on January 29, 2020, in ACS Central Science.

“Compared with traditional PDT-based antibacterial strategies, our design can alleviate off-target side effects, maximize therapeutic efficacy, and track the drug resistance in real time with the naked eye,” concluded senior author Xiaogang Qu, PhD, of the CAS Changchun Institute of Applied Chemistry, and colleagues. “This work develops a new way for the rational use of antibiotics. Given the low cost and easy operation of this point-of-care device, it can be developed for practical applications.”

PDT is used clinically to treat a wide range of medical conditions, including wet age-related macular degeneration and malignant cancers, and is recognized as a treatment strategy which is both minimally invasive and minimally toxic. While the applicability and potential of PDT has been known for over a hundred years, the development of modern PDT has been a gradual one, involving scientific progress in the fields of photobiology and cancer biology, as well as the development of modern photonic devices, such as lasers and light emitting diodes (LEDs).

Related Links:
Chinese Academy of Sciences
University of Science and Technology of China


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Ultrasound System
Voluson Signature 18

Print article

Channels

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more