We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Decontamination Robot Sanitizes Rooms in Five Minutes

By HospiMedica International staff writers
Posted on 24 Mar 2020
Print article
Image: The LightStrike Germ-Zapping Robot (Photo courtesy of Xenex)
Image: The LightStrike Germ-Zapping Robot (Photo courtesy of Xenex)
A new germ-zapping robot emits broad-spectrum ultraviolet (UV) light that disrupts the cell walls of microorganisms and causes irreparable damage.

The Xenex (San Antonio, TX, USA) LightStrike Germ-Zapping Robot uses a bulb filled with xenon gas to create intense germicidal UV light with an extensive range that includes both UV-B (280-315nm) and UV-C (200-280nm), and at an intensity thousands of times higher than mercury bulbs. The continuous UV light reduces microbial load in as little as five minutes, including methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, vancomycin-resistant Enterococcus (VRE), and other organisms. The robot has also been shown to reduce surgical site infection (SSI) rates.

Features include an impact resistant shell and four castors for portability; a telescopic mechanism to raise the xenon-filled bulb from its protective casing before use; a triple sensor motion detection cone to identify people are in the room, enhancing patient and staff safety; a simple user interface with auto-updating software for new features; cloud-based reporting over cellular or Wi-Fi networks; and extreme durability and reliability. After use, the room will remain disinfected until new pathogens enter the room from a visitor, patient, care provider, or the air handling system.

“A mercury light bulb is about the average intensity of a fluorescent light. Ours is 400 to 1,400 times more intense, depending on where the disinfecting spectrum is. The answer is, intensity makes all the difference,” said Morris Miller, CEO of Xenex. “It’s the difference between a hose and a power washer. A hose will put out a lot more water; but a power washer, at 18,000 pounds per square inch, will clean your sidewalk in the way that a hose won’t.”

Increasing evidence confirms that Clostridium difficile, MRSA, VRE, Acinetobacter baumannii, and influenza are transmitted via environmental surfaces, and that only 50% of environmental surfaces in a typical operating room or patient room may be effectively disinfected. The current patient’s risk of contracting a hospital acquired infection (HAI) from contaminated surfaces increases 100% when the previous room occupant had been diagnosed with an infection.

Related Links:
Xenex

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Multilevel Self-Loading Stretcher
CARRERA XL

Print article

Channels

Surgical Techniques

view channel
Image: ‘Wraparound’ implants represent a new approach to treating spinal cord injuries (Photo courtesy of 123RF)

Tiny Wraparound Electronic Implants to Revolutionize Treatment of Spinal Cord Injuries

The spinal cord functions as a vital conduit, transmitting nerve impulses to and from the brain, much like a highway. When the spinal cord is damaged, this flow of information is disrupted, leading to... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more