We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Enhanced Pedicle Screw System Harnesses Nanotechnology

By HospiMedica International staff writers
Posted on 04 May 2020
Print article
Image: The Nano FortiFix pedicle screw boasts a bioceramic nanotube surface (Photo courtesy of Nanovis).
Image: The Nano FortiFix pedicle screw boasts a bioceramic nanotube surface (Photo courtesy of Nanovis).
An innovative pedicle screw system with a bioceramic nanotube surface encourages osteoblast and mesenchymal stem cells (MSC) adhesion.

The Nanovis (Carmel, IN, USA) Nano FortiFix is a thoraco-lumbo-sacral screw system designed to provide immobilization and stabilization of spinal segments in skeletally mature patients as an adjunct to fusion in the non-cervical spine. Indications include back pain of discogenic origin with degeneration of the disc (DDD), as confirmed by history and radiographic studies; spinal stenosis, spondylolisthesis, and trauma; and spinal deformities such as scoliosis, kyphosis, and/ or lordosis), tumors, pseudarthrosis, and failed previous fusion.

The system consists of chrome cobalt rods and titanium alloy polyaxial pedicle screws, connectors, and fasteners in a variety of sizes to accommodate differing anatomic requirements. The Nano FortiFix pedicle screw shaft itself is available with or without a micro- and nano-roughened surface and screw threads that have been manipulated to produce nanoscale electrochemically treated surfaces with a controlled nanotopography composed of nanotube arrays with a pore size diameter of 30 to 90 nanometers. In addition, calcium and phosphate are incorporated into the nanotube surface.

“This technology uniquely offers comparative data in the label assessing the relative performance of both human osteoblasts and human mesenchymal stem cells on our bioceramic nanotube surface against both conventional and micron rough titanium surfaces, with or without an acid etched nanoroughness, and with or without a calcium phosphate coated surface,” said Matt Hedrick, CEO of Nanovis. “We are particularly grateful to our scientists and innovative surgeon partners for guiding this technology to the market where it can benefit patients.”

“Surgeons and distributors have been very complementary of the nanotechnology benefits of our Nano FortiCore interbodies and have requested to pair them with nanotechnology enhanced pedicle screws,” said Jeff Shepherd, VP of Sales at Nanovis. “We plan to offer a complete portfolio of nanotechnology enhanced pedicle screw systems to include open, percutaneous, midline, and deformity, to give patients the most advanced technology possible.”

Pedicle screws provide a means of gripping a spinal segment. The screws themselves do not fixate the spinal segment, but act as firm anchor points that can then be connected with a rod. The screws are placed at two or three consecutive spine segments and then a short rod is used to connect the screws; this construct prevents motion at the segments that are being fused. After the bone graft grows, the screws and rods are no longer needed for stability and may be safely removed. However, most surgeons do not recommend removal unless the pedicle screws cause discomfort for the patient.

Related Links:
Nanovis

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Anesthesia Cart
UMGSA-33369-VIL

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more