We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Breakthrough Tech Pinpoints Seizure-Originating Brain Regions and Predicts Outcome Before Surgery

By HospiMedica International staff writers
Posted on 13 May 2022
Print article
Image: Breakthrough tech enables seizure localization in minutes (Photo courtesy of Pexels)
Image: Breakthrough tech enables seizure localization in minutes (Photo courtesy of Pexels)

Fresh techniques to aid seizure diagnosis and surgical planning stand to benefit millions of epilepsy patients, but the path to progress has been slow and challenging. Researchers have now introduced a novel network analysis technology that uses minimally invasive resting state electrophysiological recordings to localize seizure onset brain regions and predict seizure outcomes.

In current practice, prior to any surgical removal of tissues, clinicians often drill holes into the skull to place recording electrodes atop the brain. The electrodes record electrical activity in the brain over the course of days or weeks, however long it takes for seizure(s) to materialize, to inform of where seizure(s) are taking place. While necessary, this practice can be time-consuming, costly, and uncomfortable for patients to stay in hospital for days to weeks. The novel network analysis technique developed by researchers at Carnegie Mellon University (Pittsburgh, PA, USA) can pinpoint seizure-originating brain regions and predict a patient’s seizure outcome before surgery, using only 10 minutes of resting state recordings without the need to wait for seizures to occur.

The technique extracts information flow across all recording electrodes and makes a prediction based on the different levels of information flow. The researchers discovered that the information flow from non-seizure generating tissue to seizure originating tissue is much larger than the inverse direction, and the notably greater difference in information flow often leads to a seizure-free outcome. Once implemented, this approach could have a major impact to inform clinicians and families if a patient should pursue a surgery and what the likelihood of surgical success would be.

“In a group of 27 patients, our accuracy of localizing seizure onset brain regions, was 88%, which is a fascinating result,” explained Bin He, professor of biomedical engineering at Carnegie Mellon University. “We use machine learning and network analysis to analyze a 10-minute resting state recording to predict where the seizure will come out. While this method is still invasive, it is to a significantly decreased degree, because we’ve taken the recording timeline from multiple days or even weeks down to 10 minutes.”

“In the same group of patients, our accuracy of predicting their seizure outcome, or the possibility of becoming seizure-free post-surgery, was 92%,” added Bin He. “Eventually, this type of data could guide patients toward or away from surgery, and it is information that is not readily available today.”

Related Links:
Carnegie Mellon University 

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Anesthesia Cart
UMGSA-33369-VIL

Print article

Channels

Critical Care

view channel
Image: A machine learning tool can identify patients with rare, undiagnosed diseases years earlier (Photo courtesy of 123RF)

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

Patients suffering from rare diseases often endure extensive delays in receiving accurate diagnoses and treatments, which can lead to unnecessary tests, worsening health, psychological strain, and significant... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more