We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Myocardial Infarction Treatment Patch Could Improve Heart Function

By HospiMedica International staff writers
Posted on 19 Dec 2022
Print article
Image: A new-concept heart patch for treatment of myocardial infarction improves heart function (Photo courtesy of POSTECH)
Image: A new-concept heart patch for treatment of myocardial infarction improves heart function (Photo courtesy of POSTECH)

Myocardial infarction is an ischemic disease in which a coronary artery supplying blood to the heart muscle is stenotic or obstructed, resulting in cardiac tissue necrosis. Due to the irreversible loss of cardiomyocytes, damaged heart tissue cannot be naturally regenerated. The most recent effort to regenerate the damaged heart tissue is to transplant stem cells to the damaged area. However, this approach has low engraftment rates stemming from the highly curved surface of the heart and its dynamic nature – hindering the cells from settling on the heart to allow time for cell regeneration.

Now, a team of physicians at Pohang University of Science and Technology (POSTECH, Gyeongbuk, Korea) has successfully transplanted a highly integrable in vivo priming bone marrow mesenchymal stem cell (BMSC) sheet based on the utilization of a thermos-responsive nanofiber membrane. Their work has attracted attention from academic circles for developing a human umbilical vein endothelial cell (HUVEC) sheet specially designed for enhancement of an angiogenesis (formation of new blood vessels from pre-existing vessels), which promoted cardiac repair when transplanted together with the BMSC sheet.

Stem cells are pluripotent when they have yet to be differentiated and are able to self-renew by dividing and developing into all cell types. When transplanted, they promote new tissue regeneration, which can be applied to treat incurable diseases. From here, cell sheet engineering takes a further step by enabling the transplant of cell sheet made only of stem cells to damaged areas for promoting tissue regeneration. Attempts to treat myocardial infarction with various types of patches were stymied as the heart’s curved shape and constant pulsing prevent such a patch from staying in place.

The joint team of researchers decided to use a BMSC sheet on a thermos-responsive nanofiber membrane. This stem cell sheet, rich in the extracellular matrix, has strong adhesion and the advantage of being able to anchor many cells to the required location. Along with this sheet, the researchers transplanted another sheet made of HUVECs. After the transplantation, the team found that a prolonged secretion of multiple angiogenic cytokines, such as vascular endothelial growth factor, angiopoietin-1, and insulin-like growth factor-1 promoted angiogenesis, leading to a significant improvement in the cardiac function, including intrinsic contractibility and remodeling. This technique is assessed to have proposed a new-concept heart patch by improving the heart function for the treatment of myocardial infarction as well as increasing integration and engraftment rates, which have been some of the challenges of utilizing patches.

Related Links:
POSTECH

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Bronchoscopy Head Support
Reison 10-330

Print article

Channels

Surgical Techniques

view channel
Image: The robot`s segments can flatten and extend into cylinders (Photo courtesy of Princeton)

Caterpillar Robot with Built-In Steering System Crawls Easily Through Loops and Bends

Soft robots often face challenges in being guided effectively because adding steering mechanisms typically reduces their flexibility by increasing rigidity. Now, a team of engineers has combined ancient... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more