We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Research Could Lower Malfunction Rates for Medical Implants

By HospiMedica International staff writers
Posted on 15 Mar 2023
Print article
Image: New research finding could improve immune response control for medical implants (Photo courtesy of Pexels)
Image: New research finding could improve immune response control for medical implants (Photo courtesy of Pexels)

Medical implants can save lives or significantly improve quality of life, but they can also trigger an immune response in our bodies. When immune cells respond to these foreign objects, it can lead to the accumulation of excess tissue at the site - this is known as fibrosis or scarring. Traditionally, protein deposition has been linked to the fibrotic response to implants. Now, bioengineers at Rice University (Houston, TX, USA) have discovered that lipids on the surfaces of implants can also play a role in mediating the body's response. Some lipids may act as "peacekeepers" while others may cause conflict.

With this knowledge, scientists could develop biomaterials or coatings for implants that reduce the aggressive response from the host immune system. This would decrease the malfunction rates for numerous biomedical devices including pacemakers, coronary stents, surgical meshes, drug delivery pumps, and biosensors. The researchers believe that optimizing implant performance is particularly important for patients with chronic and life-threatening conditions like hydrocephalus, where excess cerebrospinal fluid in the brain can only be managed by placing a CSF shunt. Pediatric hydrocephalus patients face especially high rates of implant failure, which can lead to severe consequences such as brain injury, loss of vision, headaches, vomiting, and even death if not addressed promptly.

“In our research, we realized that, while proteins are important, fat molecules also play a significant role in the fibrotic process,” said Christian Schreib is a Rice graduate student and lead author on the study. “We identified two lipid profiles, fatty acids and phospholipids. Fatty acids are more likely to provoke an immune response, while phospholipids are more likely to fly under the radar and not irk the immune system.”

“Now that we understand this, we can use this knowledge to engineer materials for use in implants that are less likely to trigger an immune response. We could, say, engineer a material that pulls in phospholipids to it, so that when you implant the material, the phospholipids naturally deposit onto it and help it evade the immune system. We might also want to look at taking those fat molecules like the phospholipids and chemically functionalize them to the device surface before implantation,” added Schreib.

Related Links:
Rice University 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Oxidized Zirconium Implant Material
OXINIUM

Print article

Channels

Critical Care

view channel
Image: A demonstration of the on-skin wearable bioelectronic device (Photo courtesy of University of Missouri)

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants

A team of researchers at the University of Missouri (Columbia, MO, USA) has achieved a milestone in developing a state-of-the-art on-skin wearable bioelectronic device. This development comes from a lab... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more