We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Wearable Ultrasound Patch Marks Breakthrough in Deep Tissue Monitoring

By HospiMedica International staff writers
Posted on 04 May 2023
Print article
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)

Ultrasound examination of tissues' biomechanical properties can assist in detecting and managing pathophysiological conditions, tracking lesion development, and evaluating rehabilitation progress. Engineers have now developed a stretchable ultrasonic array that enables non-invasive, serial, three-dimensional imaging of tissues up to four centimeters beneath the human skin's surface, with a spatial resolution of 0.5 millimeters. This novel method offers a non-invasive, long-term alternative to current approaches, boasting improved penetration depth.

The elastography monitoring system developed by engineers at the University of California San Diego (La Jolla, CA, USA) enables serial, non-invasive, and three-dimensional mapping of deep tissue mechanical properties, with several crucial applications. In medical research, serial data on pathological tissues can offer vital information on disease progression, such as cancer, which typically causes cells to stiffen. Wearable ultrasound patches not only perform the detection function of conventional ultrasound but also overcome its limitations, such as one-time testing, hospital-based testing, and the need for staff operation. This could help decrease misdiagnoses and fatalities while significantly reducing costs by offering a non-invasive and affordable alternative to traditional diagnostic procedures.

The device features a 16 by 16 array, with each element consisting of a 1-3 composite element and a silver-epoxy composite backing layer designed to absorb excessive vibration, thereby expanding the bandwidth and enhancing axial resolution. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging validated through magnetic resonance elastography. The researchers aim to further improve the device by incorporating an elastomer layer with a known modulus, a so-called calibration layer, to obtain quantitative, absolute values of tissues' moduli. This enhancement would provide more comprehensive information about tissues' mechanical properties, thereby further refining the ultrasonic devices' diagnostic capabilities.

Besides monitoring cancerous tissues, this technology can help medical professionals accurately track liver fibrosis and cirrhosis progression and determine the most suitable treatment course. Moreover, by monitoring changes in tissue stiffness, the technology can offer valuable insights into musculoskeletal disorders' progression, such as tendonitis, tennis elbow, and carpal tunnel syndrome, allowing doctors to develop personalized treatment plans. Additionally, by monitoring arterial wall elasticity, doctors can detect early signs of myocardial ischemia and make timely interventions to prevent further damage.

“This new wave of wearable ultrasound technology is driving a transformation in the healthcare monitoring field, improving patient outcomes, reducing healthcare costs and promoting the widespread adoption of point-of-care diagnosis,” said Yuxiang Ma, a visiting student in the Xu group and study coauthor. “As this technology continues to develop, it is likely that we will see even more significant advances in the field of medical imaging and healthcare monitoring.”

Related Links:
University of California San Diego 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Examination Data Management Software
DiVAS 2.8

Print article

Channels

Critical Care

view channel
Image: AI could help physicians detect abnormal heart rhythms earlier (Photo courtesy of 123RF)

AI to Improved Diagnosis of Atrial Fibrillation

Abnormal heart rhythms frequently arise from—and contribute to—structural abnormalities in the heart. Atrial fibrillation is a specific type of abnormal rhythm that may not be consistently present, often... Read more

Surgical Techniques

view channel
Image: ‘Wraparound’ implants represent a new approach to treating spinal cord injuries (Photo courtesy of 123RF)

Tiny Wraparound Electronic Implants to Revolutionize Treatment of Spinal Cord Injuries

The spinal cord functions as a vital conduit, transmitting nerve impulses to and from the brain, much like a highway. When the spinal cord is damaged, this flow of information is disrupted, leading to... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more