We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Inkjet-Printed Tattoos Support Medical Diagnostics

By HospiMedica International staff writers
Posted on 12 Apr 2018
Print article
Image: Novel tattoo electrodes can be applied to the skin like temporary transfer pictures (Photo courtesy of Lunghammer / TUGraz).
Image: Novel tattoo electrodes can be applied to the skin like temporary transfer pictures (Photo courtesy of Lunghammer / TUGraz).
A new study shows how electrodes for long-term monitoring of electrical impulses can be produced using an ink-jet printer.

Developed by researchers at Graz University of Technology (TUGraz; Austria), the BioRobotics Institute (Pontedera, Italy), and other institutions, the dry, unperceivable temporary tattoo electrodes can be fabricated by inkjet printing of a conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. The printer can produce single or multiple electrode arrangements, with all of the external connections necessary for transmitting the signals integrated directly in the tattoo.

The electrodes are then applied to the skin as a temporary tattoo, with adhesion maintained by their ultralow thickness--under one micrometer--allowing them to adapt perfectly to uneven human skin, and even be applied to parts of the body where traditional electrodes are not suitable, such as the face. Another feature is that even a perforation of the tattoo, for instance through the growth of a hair, does not impair conductivity or signal transmission, which is particularly relevant in the case of long-term applications, as hair growth leads to inaccuracies in the results of traditional measuring methods.

The researchers validated electrophysiological viability of the tattoo by surface electromyography (EMG) and electrocardiography (ECG) recordings on various limbs and the face, with the tattoos providing flawless data transmission for up to three days. According to the researchers, electrodes of different sizes and arrangements could be produced using the printer, which can be individually adapted to the respective body part on which the measurement is to be carried out, without restricting or influencing normal activities. The study was published in the March 2018 issue of Advanced Science.

“We are working on the development of wireless tattoo electrodes with integrated transistor, which would make it possible to both send and receive signals. Not only could we measure impulses using this method, but we could also stimulate body regions in a targeted way,” said senior author Francesco Greco, PhD, of TUGraz. “We are on a direct road to making an extremely economical and simple as well as versatile applicable system which has enormous market potential.”

Related Links:
Graz University of Technology
BioRobotics Institute

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
ECG Monitoring Solution
Bardy CAM Patch

Print article

Channels

Critical Care

view channel
Image: The largest scale analysis compared longer-term percutaneous devices for aortic valve replacement versus surgery (Photo courtesy of Adobe Stock)

Transcatheter Valve Replacement Outcomes Similar To Surgery, Finds Study

A new study has shown that a minimally invasive procedure for replacing the aortic valve in the heart—known as transcatheter aortic valve replacement (TAVR)—is on par with the more traditional surgical... Read more

Surgical Techniques

view channel
Image: The AR tech allows for sub-millimeter accuracy, helping to potentially reduce risks (Photo courtesy of Medivis)

AR Surgical Technology Translates Complex 2D Medical Imaging to Enhance Accuracy

Surgeons often have to switch their focus between a patient’s data displayed on a screen or clipboard and the patient themselves during procedures. But that is about to change. Surgeons can now utilize... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more