We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Biomedical Tattoo Detects Cancer-Associated Hypercalcemia

By HospiMedica International staff writers
Posted on 01 May 2018
Print article
Image: A new study explains how increased calcium levels trigger the production of melanin, causing a mole to form (Photo courtesy of ETH Zurich).
Image: A new study explains how increased calcium levels trigger the production of melanin, causing a mole to form (Photo courtesy of ETH Zurich).
A new study describes how a mole-like synthetic implant recognizes the elevated levels of calcium in the blood associated with incipient prostate, lung, colon, and breast cancer tumors.

Developed by researchers at ETH Zurich (Switzerland) and the University of Basel (Switzerland), the so-called early warning system is comprised of an encapsulated gene network integrated into human body cells implanted under the skin, where it constantly monitors blood calcium levels. When calcium levels exceed a pre-determined threshold, a synthetic signaling cascade expresses transgenic tyrosinase, which triggers the production of melanin in the genetically modified cells. The skin then forms a brown mole that is visible to the naked eye.

The researchers validated the design in wild-type mice inoculated with hypercalcemic breast and colon adenocarcinoma cells. The mice, which were implanted with the subcutaneous encapsulated engineered cells, all developed tattoos, whereas no tattoos were seen in animals inoculated with normo-calcemic tumor cells. The study also confirmed that the synthetic biomedical mole could not only be detected with the naked eye, but could also optically quantified. All animals remained asymptomatic throughout the 38-day experimental period. The study was published on April 18, 2018, in Science Translational Medicine.

“It recognizes the four most common types of cancer--prostate, lung, colon, and breast cancer--at a very early stage, namely when the level of calcium in the blood is elevated due to the developing tumor,” said senior author Professor Martin Fussenegger, PhD, of the ETH department of biosystems science and engineering. “An implant carrier should then see a doctor for further evaluation after the mole appears. It is no reason to panic; the mole does not mean that the person is likely to die soon.”

“It is intended primarily for self-monitoring, making it very cost effective. However, for those who would prefer not to deal with the constant stress, an implant can also be used that develops a mark visible only under a red light,” concluded Professor Fussenegger. “The disadvantage is that the service life of such an implant is limited. Encapsulated living cells last for about a year, according to other studies. After that, they must be inactivated and replaced.”

Calcium is an essential element vital to the health of the muscular, circulatory, and digestive systems; is indispensable to the building of bone; and supports synthesis and function of blood cells. For example, it regulates the contraction of muscles, nerve conduction, and the clotting of blood. As a result, intra- and extracellular calcium levels are tightly regulated by the body. Cancer can cause hypercalcemia by bone degradation, releasing excess calcium into the blood; some tumors can produce proteins that mimic parathyroid hormone; and others can affect the ability of the kidneys to remove excess calcium.

Related Links:
ETH Zurich
University of Basel

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Portable Patient Monitor
PM-2000XL

Print article

Channels

Critical Care

view channel
Image: The largest scale analysis compared longer-term percutaneous devices for aortic valve replacement versus surgery (Photo courtesy of Adobe Stock)

Transcatheter Valve Replacement Outcomes Similar To Surgery, Finds Study

A new study has shown that a minimally invasive procedure for replacing the aortic valve in the heart—known as transcatheter aortic valve replacement (TAVR)—is on par with the more traditional surgical... Read more

Surgical Techniques

view channel
Image: The AR tech allows for sub-millimeter accuracy, helping to potentially reduce risks (Photo courtesy of Medivis)

AR Surgical Technology Translates Complex 2D Medical Imaging to Enhance Accuracy

Surgeons often have to switch their focus between a patient’s data displayed on a screen or clipboard and the patient themselves during procedures. But that is about to change. Surgeons can now utilize... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more