HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

3D Body Mapping Helps Repair Cellular Damage

By HospiMedica International staff writers
Posted on 02 Jul 2019
Print article
Image: A floating 3D scaffold providing efficient tissue engineering monitoring (Photo courtesy of ACS Nano).
Image: A floating 3D scaffold providing efficient tissue engineering monitoring (Photo courtesy of ACS Nano).
A new study reveals an innovative three-dimensional (3D) instrumented mapping technology that can monitor and track the behavior of engineered cells and tissues.

Developed by researchers at Purdue University (Lafayette, IN, USA) and Hanyang University (Seoul, Republic of Korea), the ultrabuoyant 3D scaffold remains afloat on the surface of a culture medium, providing a favorable environment for the electronic components, which remain in the air while the cells reside and grow underneath. This enables high-fidelity recording of electrical cell–substrate impedance and electrophysiological signals over long periods of time, even weeks. Currently, long-term reliable 3D monitoring is limited by the wet cell culture conditions, which are unfavorable to electronic instrument settings.

The new scaffold, on the other hand, can provide real-time monitoring of the cellular behaviors and functions, thus providing a profound impact on underlying biophysics and disease modeling. A battery of comprehensive in-vitro studies undertaken by the researchers revealed the utility of the platform as an effective tool for drug screening and tissue development following cancer treatments. They are now testing the potential of the device in stem cell therapies and the regenerative treatment of diseases. The study was published in the June 19, 2019, issue of ACS Nano.

“Tissue engineering already provides new hope for hard-to-treat disorders, and our technology brings even more possibilities. My hope is to help millions of people in need,” said senior author biomedical and mechanical engineer Chi Hwan Lee, PhD, of the Purdue College of Engineering. “This device offers an expanded set of potential options to monitor cell and tissue function after surgical transplants in diseased or damaged bodies.”

Tissue engineering, often called regenerative medicine, combines cell cultures, engineering and materials methods, and biochemical and physicochemical factors to improve or replace biological tissues. It involves the use of a tissue scaffold for the formation of new viable tissue for a medical purpose. While it was once categorized as a sub-field of biomaterials, having grown in scope and importance it can be considered as a field in its own.

Related Links:
Purdue University
Hanyang University

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Soft-Tissues Biopsy Needle
MR-CLEAR

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more