HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Nanodrone Detects Toxic Gases in Hazardous Environments

By HospiMedica International staff writers
Posted on 08 Aug 2019
Print article
Image: Javier Burgués (L) and Santiago Marco (R), of UB and IBEC, and the nanodrone (Photo courtesy of IBEC).
Image: Javier Burgués (L) and Santiago Marco (R), of UB and IBEC, and the nanodrone (Photo courtesy of IBEC).
A new study describes an innovative smelling nano aerial vehicle (SNAV) that can detect dangerous compounds in buildings that have collapsed due to earthquakes or explosions.

Developed at the University of Barcelona (UB, Spain), the Institute for Bioengineering of Catalonia (IBEC; Barcelona, Spain) and Örebro University (ORU; Sweden), the SNAV nanodrone weighs just thirty-five grams, including two nanometric metal oxide semiconductor (MOX) gas sensors that can respond to carbon monoxide (CO), methane (CH4), and other organic volatile compounds such as ethanol, acetone and benzene, with a detection threshold on the order of one part per million in volume (PPMV), according to the gas and the sensor used.

Due to its small form-factor, the SNAV is not hazardous to humans, thus enabling its use both in public areas and inside buildings, autonomously carrying out missions in hazardous environments inaccessible to terrestrial robots and bigger drones. To guide the SNAV, six radiofrequency transceivers, located in known positions, are used, which together with a transceiver in the nanodrone itself allows operators to fly it to a desired position using the built-in accelometers and gyroscopes.

As a result, the SNAV is able to work in interior spaces, crossing holes and cracks, as well as in large areas--about 160 square meters--if the chemical emission source is hidden in areas which are hard to access, such as false ceilings, air duct systems, etc. In experiments conducted at ORU, the researchers were able to build a 3D map of the gas distribution and identify the most likely source location in less than three minutes, with a 1.38-2.05 meter accuracy. The study was published in the March 2019 issue of Sensors.

“Terrestrial robots used to focus the searching on the field of chemical signaling-based localization. Today, the option of using nanodrones broadens the ability and quickness of the robots to move within an interior space and overcome obstacles such as stairs,” said senior author Santiago Marco, PhD, head of the intelligent signaling for sensor systems in bioengineering research group at UB-IBEC. “Another line we want to work on is the merge of data from multiple gas sensors to increase selectivity towards certain compounds of interest.”

Related Links:
University of Barcelona
Institute for Bioengineering of Catalonia
Örebro University

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Oxidized Zirconium Implant Material
OXINIUM

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more