We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

AI Enabled Ultrasound Device Advances Spine Surgery

By HospiMedica International staff writers
Posted on 29 Apr 2020
Print article
Image: The SonoVision ultrasound imaging system (Photo courtesy of TDi).
Image: The SonoVision ultrasound imaging system (Photo courtesy of TDi).
An innovative real-time surgical ultrasound imaging platform provides intraoperative imaging assistance in spinal procedure applications.

The Tissue Differentiation Intelligence (TDi; Delray Beach; FL. USA) SonoVision ultrasound imaging system is intended for visualization and evaluation of bones, nerves, vascular, and other anatomical structures using the Beluga1 10 MHz transducer probe, an ergonomically designed probe developed specifically for spinal procedures. The system includes image processing software used to define anatomical features in an ultrasound B-mode image. By applying layers of image-processing algorithms to the images collected intraoperatively, it can then differentiate nerve, muscle, bone, and vessels in real time.

Features include Doppler echographic imaging and non-user adjustable acoustic output; intuitive color flow mapping of nerve, muscle, and bone; real-time 2D bone and tissue scanning and differentiation; internal function radiofrequency (RF) energy, resulting in very low RF emissions; proprietary imaging software, data capture, and external storage; and electrical safety, acoustic output, and electromagnetic compatibility that meet international standards. An in-vivo porcine study validated the accuracy of SonoVision in identifying the presence and absence of nerves within specimen psoas tissue.

“TDi ushers in a new era of innovations related to soft tissue imaging in spine surgery, and really, the beginning of a much broader trend of artificial intelligence and machine learning being applied to satisfy challenging clinical requirements in spine surgery,” said Alex Lukianov, Chairman and CEO of TDi, following recent U.S. Food and Drug Administration (FDA) clearance. “FDA clearance paves the way for ultrasound to be used as a new imaging modality for spine surgery by overcoming the impracticalities of conventional ultrasound.”

Deep learning is part of a broader family of AI machine learning methods based on data representations, as opposed to task specific algorithms. It involves neural network algorithms that use a cascade of many layers of nonlinear processing units for feature extraction and transformation, with each successive layer using the output from the previous layer as input to form a hierarchical representation.

Related Links:
Tissue Differentiation Intelligence

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Surgical Techniques

view channel
Image: The device\'s LEDs light up in several colors, allowing surgeons to see which areas they need to operate on (Photo courtesy of UC San Diego)

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

During brain surgery, neurosurgeons need to identify and preserve regions responsible for critical functions while removing harmful tissue. Traditionally, neurosurgeons rely on a team of electrophysiologists,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more