We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Wearable Ultrasound Patch Marks Breakthrough in Deep Tissue Monitoring

By HospiMedica International staff writers
Posted on 04 May 2023
Print article
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)
Image: The wearable ultrasound patch measures tissue stiffness more effectively (Photo courtesy of UC San Diego)

Ultrasound examination of tissues' biomechanical properties can assist in detecting and managing pathophysiological conditions, tracking lesion development, and evaluating rehabilitation progress. Engineers have now developed a stretchable ultrasonic array that enables non-invasive, serial, three-dimensional imaging of tissues up to four centimeters beneath the human skin's surface, with a spatial resolution of 0.5 millimeters. This novel method offers a non-invasive, long-term alternative to current approaches, boasting improved penetration depth.

The elastography monitoring system developed by engineers at the University of California San Diego (La Jolla, CA, USA) enables serial, non-invasive, and three-dimensional mapping of deep tissue mechanical properties, with several crucial applications. In medical research, serial data on pathological tissues can offer vital information on disease progression, such as cancer, which typically causes cells to stiffen. Wearable ultrasound patches not only perform the detection function of conventional ultrasound but also overcome its limitations, such as one-time testing, hospital-based testing, and the need for staff operation. This could help decrease misdiagnoses and fatalities while significantly reducing costs by offering a non-invasive and affordable alternative to traditional diagnostic procedures.

The device features a 16 by 16 array, with each element consisting of a 1-3 composite element and a silver-epoxy composite backing layer designed to absorb excessive vibration, thereby expanding the bandwidth and enhancing axial resolution. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging validated through magnetic resonance elastography. The researchers aim to further improve the device by incorporating an elastomer layer with a known modulus, a so-called calibration layer, to obtain quantitative, absolute values of tissues' moduli. This enhancement would provide more comprehensive information about tissues' mechanical properties, thereby further refining the ultrasonic devices' diagnostic capabilities.

Besides monitoring cancerous tissues, this technology can help medical professionals accurately track liver fibrosis and cirrhosis progression and determine the most suitable treatment course. Moreover, by monitoring changes in tissue stiffness, the technology can offer valuable insights into musculoskeletal disorders' progression, such as tendonitis, tennis elbow, and carpal tunnel syndrome, allowing doctors to develop personalized treatment plans. Additionally, by monitoring arterial wall elasticity, doctors can detect early signs of myocardial ischemia and make timely interventions to prevent further damage.

“This new wave of wearable ultrasound technology is driving a transformation in the healthcare monitoring field, improving patient outcomes, reducing healthcare costs and promoting the widespread adoption of point-of-care diagnosis,” said Yuxiang Ma, a visiting student in the Xu group and study coauthor. “As this technology continues to develop, it is likely that we will see even more significant advances in the field of medical imaging and healthcare monitoring.”

Related Links:
University of California San Diego 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
24.5-inch Full HD 2D OLED Medical Monitor
PVM-2551MD

Print article

Channels

Surgical Techniques

view channel
Image: The device\'s LEDs light up in several colors, allowing surgeons to see which areas they need to operate on (Photo courtesy of UC San Diego)

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

During brain surgery, neurosurgeons need to identify and preserve regions responsible for critical functions while removing harmful tissue. Traditionally, neurosurgeons rely on a team of electrophysiologists,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more