Wearable Monitor Identifies Swallowing Disorders
By HospiMedica International staff writers Posted on 01 Jan 2020 |

Image: The Curasis submental swallowing sensor (Photo courtesy of Purdue University)
A flexible submental sensor patch with remote monitoring capabilities helps in the management of oropharyngeal swallowing disorders.
Developed at Purdue University (Lafayette, IN, USA), the noninvasive skin-mountable sensor patch fits on the curvature of the submental area, providing simultaneous remote monitoring of muscle activity and laryngeal movement during swallowing tasks and maneuvers. The recording of the submental muscle activity is then sent wirelessly to separate unit (clipped on the wearer's shirt) so as to store it for later analysis by a doctor. The sensor patches are built with cheap disposable components, and are meant to be used about 10 times before they are thrown away. A study describing the device was published on December 13, 2019, in Science Advances.
Completion of a swallow requires the precise coordination of more than 30 pairs of muscles of the head and neck, six pairs of cranial nerves, and complex circuitry in the brainstem and several brain areas. Any disruption in these pathways can result in severe oropharyngeal swallowing disorders, also known as dysphagia. Swallowing rehabilitation requires frequent performance of both head and neck exercises that primarily rely on biofeedback devices, which are usually available only in large medical centers. This dearth directly affects treatment compliance and outcomes.
“Our device is unique in that we specifically created it to work well with the small and intricate muscles associated with swallowing events,” said Chi Hwan Lee, PhD, assistant professor of biomedical and mechanical engineering at the Purdue College of Engineering, and CTO of Curasis (Lafayette, IN, USA), which will develop the product commercially. “The sensor sticker is stretchable and flexible to work well with the skin and curvilinear head and neck shape, while the connected unit has electronic chips and more rigid components.”
Dysphagia is difficulty in swallowing that is sometimes classifies as a symptom, and in some contexts it is classified as a condition in its own right. It may manifest as a sensation that suggests difficulty in the passage of solids or liquids from the mouth to the stomach, a lack of pharyngeal sensation, or various other inadequacies of the swallowing mechanism. Dysphagia is distinguished from other symptoms like odynophagia (painful swallowing) and globus, the sensation of a lump in the throat. A person can have dysphagia without odynophagia, odynophagia without dysphagia, or both together.
Related Links:
Purdue University
Developed at Purdue University (Lafayette, IN, USA), the noninvasive skin-mountable sensor patch fits on the curvature of the submental area, providing simultaneous remote monitoring of muscle activity and laryngeal movement during swallowing tasks and maneuvers. The recording of the submental muscle activity is then sent wirelessly to separate unit (clipped on the wearer's shirt) so as to store it for later analysis by a doctor. The sensor patches are built with cheap disposable components, and are meant to be used about 10 times before they are thrown away. A study describing the device was published on December 13, 2019, in Science Advances.
Completion of a swallow requires the precise coordination of more than 30 pairs of muscles of the head and neck, six pairs of cranial nerves, and complex circuitry in the brainstem and several brain areas. Any disruption in these pathways can result in severe oropharyngeal swallowing disorders, also known as dysphagia. Swallowing rehabilitation requires frequent performance of both head and neck exercises that primarily rely on biofeedback devices, which are usually available only in large medical centers. This dearth directly affects treatment compliance and outcomes.
“Our device is unique in that we specifically created it to work well with the small and intricate muscles associated with swallowing events,” said Chi Hwan Lee, PhD, assistant professor of biomedical and mechanical engineering at the Purdue College of Engineering, and CTO of Curasis (Lafayette, IN, USA), which will develop the product commercially. “The sensor sticker is stretchable and flexible to work well with the skin and curvilinear head and neck shape, while the connected unit has electronic chips and more rigid components.”
Dysphagia is difficulty in swallowing that is sometimes classifies as a symptom, and in some contexts it is classified as a condition in its own right. It may manifest as a sensation that suggests difficulty in the passage of solids or liquids from the mouth to the stomach, a lack of pharyngeal sensation, or various other inadequacies of the swallowing mechanism. Dysphagia is distinguished from other symptoms like odynophagia (painful swallowing) and globus, the sensation of a lump in the throat. A person can have dysphagia without odynophagia, odynophagia without dysphagia, or both together.
Related Links:
Purdue University
Latest Patient Care News
- Portable Biosensor Platform to Reduce Hospital-Acquired Infections
- First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds
- Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
- Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
- Next Gen ICU Bed to Help Address Complex Critical Care Needs
- Groundbreaking AI-Powered UV-C Disinfection Technology Redefines Infection Control Landscape
- Clean Hospitals Can Reduce Antibiotic Resistance, Save Lives
- Smart Hospital Beds Improve Accuracy of Medical Diagnosis
- New Fast Endoscope Drying System Improves Productivity and Traceability
- World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance
- Portable High-Capacity Digital Stretcher Scales Provide Precision Weighing for Patients in ER
- Portable Clinical Scale with Remote Indicator Allows for Flexible Patient Weighing Use
- Innovative and Highly Customizable Medical Carts Offer Unlimited Configuration Possibilities
- Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients
- Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases
- Wearable Cardioverter Defibrillator System Protects Patients at Risk of Sudden Cardiac Arrest
Channels
Critical Care
view channel
Novel Intrabronchial Method Delivers Cell Therapies in Critically Ill Patients on External Lung Support
Until now, administering cell therapies to patients on extracorporeal membrane oxygenation (ECMO)—a life-support system typically used for severe lung failure—has been nearly impossible.... Read more
Generative AI Technology Detects Heart Disease Earlier Than Conventional Methods
Detecting heart dysfunction early using cost-effective and widely accessible tools like electrocardiograms (ECGs) and efficiently directing the right patients for more expensive imaging tests remains a... Read more
Wearable Technology Predicts Cardiovascular Risk by Continuously Monitoring Heart Rate Recovery
The heart's response to physical activity is a vital early indicator of changes in health, particularly in cardiovascular function and mortality. Extensive research has demonstrated a connection between... Read more
Wearable Health Monitoring Device Measures Gases Emitted from and Absorbed by Skin
The skin plays a vital role in protecting our body from external elements. A key component of this protective function is the skin barrier, which consists of tightly woven proteins and fats that help retain... Read moreSurgical Techniques
view channel
Intravascular Imaging for Guiding Stent Implantation Ensures Safer Stenting Procedures
Patients diagnosed with coronary artery disease, which is caused by plaque accumulation within the arteries leading to chest pain, shortness of breath, and potential heart attacks, frequently undergo percutaneous... Read more
World's First AI Surgical Guidance Platform Allows Surgeons to Measure Success in Real-Time
Surgeons have always faced challenges in measuring their progress toward surgical goals during procedures. Traditionally, obtaining measurements required stepping out of the sterile environment to perform... Read moreHealth IT
view channel
Printable Molecule-Selective Nanoparticles Enable Mass Production of Wearable Biosensors
The future of medicine is likely to focus on the personalization of healthcare—understanding exactly what an individual requires and delivering the appropriate combination of nutrients, metabolites, and... Read more
Smartwatches Could Detect Congestive Heart Failure
Diagnosing congestive heart failure (CHF) typically requires expensive and time-consuming imaging techniques like echocardiography, also known as cardiac ultrasound. Previously, detecting CHF by analyzing... Read moreBusiness
view channel
Expanded Collaboration to Transform OR Technology Through AI and Automation
The expansion of an existing collaboration between three leading companies aims to develop artificial intelligence (AI)-driven solutions for smart operating rooms with sophisticated monitoring and automation.... Read more