We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Machine Learning Tool Accurately Predicts Prostate Cancer

By HospiMedica International staff writers
Posted on 01 Mar 2019
Print article
Researchers from the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and Keck School of Medicine at the University of Southern California (Los Angeles, CA, USA) have developed a machine-learning framework that can distinguish between low- and high-risk prostate cancer with greater precision than ever before. The framework is expected intended to help physicians, particularly radiologists, in identifying treatment options more accurately for prostate cancer patients, thereby reducing the need for unnecessary clinical intervention.

The standard methods currently being used to assess prostate cancer risk are multi-parametric magnetic resonance imaging (mpMRI), which detects prostate lesions, and the Prostate Imaging Reporting and Data System, version 2 (PI-RADS v2), a five-point scoring system that classifies lesions found on the mpMRI. These tools are intended to soundly predict the likelihood of clinically significant prostate cancer. However, PI-RADS v2 scoring is subjective and does not distinguish clearly between intermediate and malignant cancer levels (scores 3, 4, and 5), resulting in differing interpretations among clinicians most of the time.

In order to remedy this drawback, it has been proposed to combine machine learning with radiomics—a branch of medicine that uses algorithms to extract large amounts of quantitative characteristics from medical images. While other studies have only tested a limited number of machine learning methods to address this limitation, the Mount Sinai and USC researchers have developed a predictive framework that rigorously and systematically assessed many such methods to identify the best-performing one. The framework also leverages larger training and validation data sets than previous studies did, allowing the researchers to classify the patients’ prostate cancer with high sensitivity and an even higher predictive value.

“By rigorously and systematically combining machine learning with radiomics, our goal is to provide radiologists and clinical personnel with a sound prediction tool that can eventually translate to more effective and personalized patient care,” said Gaurav Pandey, PhD, Assistant Professor of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai and senior corresponding author of the publication alongside co-corresponding author Bino Varghese, PhD, Assistant Professor of Research Radiology at the Keck School of Medicine at USC. “The pathway to predicting prostate cancer progression with high accuracy is ever improving, and we believe our objective framework is a much-needed advancement.”

Related Links:
Icahn School of Medicine at Mount Sinai
Keck School of Medicine at the University of Southern California

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Video Laryngoscope
SH-VL1

Print article

Channels

Critical Care

view channel
Image: The Esprit BTK System has received FDA approval for arteries below the knee (Photo courtesy of Abbott)

First-Of-Its-Kind Dissolvable Stent to Improve Outcomes for Patients with Severe PAD

Peripheral artery disease (PAD) affects millions and presents serious health risks, particularly its severe form, chronic limb-threatening ischemia (CLTI). CLTI develops when arteries are blocked by plaque,... Read more

Surgical Techniques

view channel
Image: The hyperspectral imaging system extracts molecular vibrations of different resins and distinguishes between them with high reproducibility (Photo courtesy of Hiroshi Takemura from Tokyo University of Science)

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Hyperspectral imaging (HSI) is an advanced technique that captures and processes information across a given electromagnetic spectrum. Near-infrared hyperspectral imaging (NIR-HSI) has particularly gained... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more