We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Breakthrough Device Disrupts Implant Biofilm Buildup

By HospiMedica International staff writers
Posted on 04 Nov 2019
Print article
Image: The BioPrax device applied to a metal disk (Photo courtesy of Douglas Levere / Garwood Medical Device).
Image: The BioPrax device applied to a metal disk (Photo courtesy of Douglas Levere / Garwood Medical Device).
A minimally invasive device helps eliminate biofilm infections on prosthetic knee implants during early intervention procedures.

The Garwood Medical Devices (Buffalo, NY, USA) BioPrax device is based on Cathodic Voltage Controlled Electrical Stimulation (CVCES), which helps to break down biofilm so that bacteria become visible to the immune system, and susceptible to pharmaceutical treatment. The low (1.8V) voltage electrical current is applied to the surface of the knee implant, converting it into a working electrode. Current is also passed through counter and reference electrodes, in such a way that that while the current through the counter electrode is varied, the electric potential of the working electrode is constant, relative to the electric potential of the reference electrode.

The resulting electrical fields create an environment that elicits antimicrobial activity against bacteria on the implant and in surrounding bone tissue. In animal studies conducted to date, BioPrax reduced the viability of clinical biofilms by up to 99.9% across multiple combinations of bacterial strains--including methicillin-resistant Staphylococcus aureus (MRSA)--and metal types, following application of constant cathodic voltage to commercially pure titanium for one hour. The technology will soon be expanded to help eliminate biofilm infections on other types of medically implanted metallic devices, including all artificial joints, bone screws and plates, and dental implants.

“Breakthrough Device designation by the FDA is recognition that BioPrax appears to be on the right path towards the treatment of periprosthetic joint infections in knee implant patients,” said Wayne Bacon, CEO of Garwood Medical Devices. “Our goal is to eliminate the need for follow-up surgeries. We think we can wipe out infection-causing bacteria before trouble starts.”

Biofilms protect bacterial communities via extracellular polymeric substances (EPS) that form a matrix (diffusion barrier) that limits antibiotic penetration and immobilizes them. The diffusive barrier also results in nutrient gradients that cause decreased growth and metabolic inactivity in parts of the biofilm, allowing persister cells to arise. The increased persister cell formation is particularly observed in Gram-negative bacterial biofilms, as their cell membranes are composed of lipopolysaccharides that further limit antibiotic penetration.

Related Links:
Garwood Medical Devices

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
24.5-inch Full HD 2D OLED Medical Monitor
PVM-2551MD

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more