HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

The COVID-19 Coronavirus Remains Viable for Hours or Days on Solid Surfaces

By HospiMedica International staff writers
Posted on 30 Mar 2020
Print article
Image: This transmission electron microscope image shows SARS-CoV-2, the virus that causes COVID-19, isolated from a patient in the United States (Photo courtesy of [U.S.] National Institute of Allergy and Infectious Diseases)
Image: This transmission electron microscope image shows SARS-CoV-2, the virus that causes COVID-19, isolated from a patient in the United States (Photo courtesy of [U.S.] National Institute of Allergy and Infectious Diseases)
A recently published paper sheds light on how coronavirus spreads through the air and how long it remains viable on various solid surfaces.

A novel coronavirus of zoonotic origin, SARS-CoV-2 (2019-nCoV) was first identified in patients with acute respiratory disease (COVID-19). This virus is genetically similar to SARS coronavirus and bat SARS-like coronaviruses. The outbreak was initially detected in Wuhan, a major city of China, but has subsequently exploded into a pandemic, which is raging in most of the countries of the world. At this time more than 425,000 cases of the disease have been confirmed with thousands of fatalities. Signs of infection are highly non-specific and these include respiratory symptoms, fever, cough, dyspnea, and viral pneumonia. The elderly and those with chronic diseases seem to suffer a more severe disease than does the younger, healthier population.

Many questions remain unanswered regarding how coronavirus spreads. To answer some of them, investigators at the University of California, Los Angeles (USA), the [U.S.] National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA), the [U.S.] Centers for Disease Control and Prevention (Atlanta, GA, USA), and Princeton University (Princeton, NJ, USA) analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus.

For the study, aerosols similar to those observed in samples obtained from the upper and lower respiratory tract in humans, containing SARS-CoV-2 or SARS-CoV-1 were generated with the use of a three-jet Collison nebulizer. In addition, the viability of the viruses was determined in four environmental conditions (plastic, stainless steel, copper, and cardboard).

Results revealed that SARS-CoV-2 remained viable in aerosols throughout the duration of the three hour experiment, but with a small reduction in infectious titer. This reduction was similar to that observed with SARS-CoV-1.

SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces, although the virus titer was greatly reduced. Significant reduction in virus titers were noted after 72 hours on plastic, after 48 hours on stainless steel, 24 hours on cardboard, and only four hours on copper. The stability kinetics of SARS-CoV-1 were similar. This suggests that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic.

While the results indicated that viable viruses could be detected for hours or days on some surfaces, it was not shown whether these viruses were still capable of causing the disease.

Contributing author Dr. James Lloyd-Smith, professor of ecology and evolutionary biology at the University of California, Los Angeles, said, "This virus is quite transmissible through relatively casual contact, making this pathogen very hard to contain. If you are touching items that someone else has recently handled, be aware they could be contaminated and wash your hands. The biology and epidemiology of the virus make infection extremely difficult to detect in its early stages because the majority of cases show no symptoms for five days or longer after exposure. Many people will not have developed symptoms yet."

The report appeared in the March 17, 2020, online edition of the journal New England Journal of Medicine.

Related Links:
University of California, Los Angeles
[U.S.] National Institute of Allergy and Infectious Diseases
Centers for Disease Control and Prevention
Princeton University


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Illuminated Retractor System
HandLite

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more