We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Holographic Imaging-Based COVID-19 Test Could Detect Both SARS-CoV-2 Infection and Antibodies in 30 Minutes

By HospiMedica International staff writers
Posted on 14 Oct 2020
Print article
Image: A rendering of holographic microscopy of a test bead binding antibodies (Photo courtesy of NYU`s David Grier)
Image: A rendering of holographic microscopy of a test bead binding antibodies (Photo courtesy of NYU`s David Grier)
A new method using holographic imaging to detect both viruses and antibodies has the potential to aid in medical diagnoses and, specifically, those related to the COVID-19 pandemic.

The team of New York University (New York, NY, USA) scientists who have developed the new method base their test on holographic video microscopy, which uses laser beams to record holograms of their test beads. If fully realized, the proposed test could be done in under 30 minutes, is highly accurate, and can be performed by minimally trained personnel. Moreover, the method can test for either the virus (current infection) or antibodies (immunity).

The surfaces of the beads are activated with biochemical binding sites that attract either antibodies or virus particles, depending on the intended test. Binding antibodies or viruses causes the beads to grow by a few billionths of a meter, which the NYU researchers have shown they can detect through changes in the beads’ holograms.

“Our approach is based on physical principles that have not previously been used for diagnostic testing,” said David Grier, a professor of physics at NYU and one of the researchers on the project. “We can detect antibodies and viruses by literally watching them stick to specially prepared test beads.”

“We can analyze a dozen beads per second,” explained Grier, “which means that we can cut the time for a reliable thousand-bead diagnostic test to 20 minutes. And we can measure those changes rapidly, reliably, and inexpensively.”

The holographic video microscopy is performed by an instrument named xSight.
“This instrument can count virus particles dispersed in patients’ saliva and also detect and differentiate antibodies dissolved in their blood,” added Grier. “This flexibility is achieved by changing the composition of the test beads to model what we are testing.

“Each type of bead tests for the presence of a particular target, but can also test for several targets simultaneously. Our holographic analysis distinguishes the different test beads by their size and by their refractive index—an easily controlled optical property.”

The scientists say that this capability can be used to develop libraries of test beads that may be combined into test kits for mixing with patient samples. This will support doctors in distinguishing among possible diagnoses, speeding patients’ treatment, reducing the risk of misdiagnosis, and cutting the cost of healthcare.

Related Links:
New York University

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Illuminated Retractor System
HandLite

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: Real-time analysis image by \"Eureka α\" with connective tissue highlighted in blue (Photo courtesy of Anaut Inc.)

AI-Powered Surgical Visualization Tool Supports Surgeons' Visual Recognition in Real Time

Connective tissue serves as an essential landmark in surgical navigation, often referred to as the "dissection plane" or "holy plane." Its accurate identification is vital for achieving safe and effective... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more