We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Use of Genetic Sequencing to Track SARS-CoV-2 Mutations Can Improve Diagnostic Testing Accuracy and Vaccine Effectiveness

By HospiMedica International staff writers
Posted on 23 Oct 2020
Print article
Illustration
Illustration
Scientists are tracking the SARS-CoV-2 virus that causes COVID-19 by sequencing the genome of virus samples collected from diagnostic testing. Using next generation sequencing on SARS-CoV-2 will help accurately diagnose the novel coronavirus, identify mutations and track its history.

A study by scientists at the UNC School of Medicine (Chapel Hill, NC, USA) has shown how next generation genetic sequencing can track mutations in the SARS-CoV-2 virus, which can in effect help with transmission tracing, diagnostic testing accuracy and vaccine effectiveness. This type of virus monitoring is also important in diagnostic testing. Much of the testing developed to diagnose COVID-19 looks for one portion of the gene sequence that causes the novel coronavirus. If that sequence mutates, the test is no longer accurate and results will be affected.

Their recent study is the largest to focus on suburban and rural communities in which the researchers were able to reconstruct the mutational landscape of cases seen at the UNC Medical Center. Within their study, the team of scientists did find variations in the virus’ genetic sequence, but fortunately none of the variations were located in the portion of the virus targeted in common diagnostic testing. 175 samples from confirmed COVID-19-positive patients were analyzed, out of which 57% carried the spike D614G variant noted in similar studies. The presence of this variant is associated with a higher genome copy number and its prevalence has expanded throughout the pandemic.

The researchers will continue using NGS to track the SARS-CoV-2 virus through the remainder of 2020. The goal is to enroll every patient at UNC Hospitals with flu or respiratory symptoms for COVID-19 diagnostic testing. These samples will be sequenced and compiled to form a comprehensive profile of any virus that these patients carry, information that will continue to help a community of researchers in their fight against SARS-CoV-2 and potentially novel coronaviruses.

“We are concerned about future mutations though,” said Dirk Dittmer, PhD, professor of microbiology and immunology at the UNC School of Medicine, and senior author of the study. “It is inherent in a virus’ nature to mutate. Changes in other areas of the genetic sequence can not only disrupt testing, but hinder the effectiveness of vaccines.”

“Because we are only looking at one gene sequence for the virus, we have told the FDA that we will continually monitor for changes in this gene sequence so that we can be assured that our test is still reliable,” said Melissa Miller, PhD, director of UNC Medical Center Microbiology and Molecular Microbiology Laboratories, and a co-author of the study. “NGS will help us do that.”

Related Links:
UNC School of Medicine

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Acute Care Scale
PH-740

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: NICO SPECTRA is only hand-held technology delivering blue light closer to target to enhance tissue fluorescence (Photo courtesy of NICO Corporation)

Handheld Device for Fluorescence-Guided Surgery a Game Changer for Removal of High-Grade Glioma Brain Tumors

Grade III or IV gliomas are among the most common and deadly brain tumors, with around 20,000 cases annually in the U.S. and 1.2 million globally. These tumors are very aggressive and tend to infiltrate... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more