We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Technology Enables Touchless Respiratory and Heart Rate Measurement for COVID-19 Health Screening

By HospiMedica International staff writers
Posted on 30 Oct 2020
Print article
Illustration
Illustration
Researchers have developed a new technology that provides a contactless method to add respiratory rate and heart rate to temperature readings, making it particularly relevant to detecting illnesses such as the flu and COVID-19.

The team of researchers led by the University of Michigan (Ann Arbor, MI, USA) has developed a new way to measure respiratory rate, heart rate and heart rate variability. Together with body temperature, these important indicators could identify a respiratory infection early - before a worker or student feels ill. The technology, which was recently issued a US patent, can aid in detecting illnesses such as the flu and COVID-19, but can also be used to detect stress and other physiological conditions. In keeping with social distancing, the system can perform the health screening on masked participants from beyond six feet away. The new software can be deployed in a stand-alone device or in systems that include a time-of-flight camera, such as the latest flagship smartphones from Apple, Samsung and LG.

The technology uses a near-infrared sensor, which is part of the time-of-flight camera in a smartphone, to detect blood flow on the upper portion of the face for heart rate and heart rate variability. In addition to the sensor, the time-of-flight camera contains a laser that bounces infrared light off the subject. This enables the camera to detect the motion of the upper part of the chest for the respiratory rate while compensating for fidgeting and swaying. Experimental results in a lab setting showed that readings were nearly identical to those of a high-end, FDA-approved oximeter placed on the finger as a reference point. The device takes a 24-second video of the face and upper chest of a participant, and then uses machine learning and artificial intelligence to process the data to derive the physiological parameters.

Because each individual has a unique heart rate and respiratory rate that is typical for them, this technology works best if a baseline has been established. This baseline information can be easily captured on the newer smart phones and wearable devices, according to the scientists. The contactless, physiological measurement system could be used in advanced driver assistance systems in vehicles to monitor the health of the driver, as well as potentially providing cost-effective health screening at the entrances to buildings, ships or other facilities. The technology also has applications to virtual reality and contactless authentication. If approved by the FDA as a medical device, it could provide continuous, contactless monitoring of hospital patients.

“Respiratory rate is not typically monitored due to lack of easy technology, but it is often the first sign of deterioration as the body attempts to maintain oxygen delivery to the tissues,” said Mohammed Islam, a professor of electrical engineering and computer science who is leading the research. “We’re using the very latest technology that is becoming available on smart phones to provide more accurate monitoring of overall health, while protecting caregivers and others tasked with taking health readings from highly infectious diseases.”

Related Links:
University of Michigan

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Examination Data Management Software
DiVAS 2.8

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: NICO SPECTRA is only hand-held technology delivering blue light closer to target to enhance tissue fluorescence (Photo courtesy of NICO Corporation)

Handheld Device for Fluorescence-Guided Surgery a Game Changer for Removal of High-Grade Glioma Brain Tumors

Grade III or IV gliomas are among the most common and deadly brain tumors, with around 20,000 cases annually in the U.S. and 1.2 million globally. These tumors are very aggressive and tend to infiltrate... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more