We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

`Lab on a Chip` Test Could Detect COVID-19 Immune Response Faster Than Current Antibody Testing

By HospiMedica International staff writers
Posted on 19 Jan 2021
Print article
Image: Lab on a Chip Test Could Detect COVID-19 Immune Response Faster Than Current Antibody Testing (Photo courtesy of Southern Methodist University)
Image: Lab on a Chip Test Could Detect COVID-19 Immune Response Faster Than Current Antibody Testing (Photo courtesy of Southern Methodist University)
A new antibody test being developed by researchers has the potential to detect the presence of antibodies generated in response to COVID-19 faster and with more accuracy than current antibody testing.

Conventional immunosensor antibody tests tend to be slow to show results and frequently inaccurate. Researchers at the Southern Methodist University (Dallas, TX, USA) who are developing the new test estimate that the “Lab on a Chip” test could detect immune responses to coronavirus in two to three minutes, with just a drop of blood. The materials used to create the test are inexpensive, which should result in low-cost mass production. The chip is two cm in diameter, and the device is simple enough that those without medical training should be able to perform the test.

The test, which is called Multiplexed Assay for the Immune Response to COVID-19 (MAIRC), will look for signs that a person’s immune system has at some point responded to coronavirus being present in their body. Specifically, it will detect human IgG, IgM, and IgA antibodies that are produced when someone is or has been infected with the virus. The test is performed by applying a drop of blood to a microfluidic chip used to analyze tiny amounts of liquid. A filter embedded in the microchip extracts plasma from the blood sample. The chip is then placed into an electronic instrument that uses electric measurements to detect whether specific antibodies are present in the plasma. The same technology can potentially be used to detect other diseases that have known antibody-antigen binding.

The test can be performed anywhere via a smartphone. An additional detection method to measure how much of each type of antibody - IgG, IgM, or IgA - is found in a sample allows doctors to better track a person’s recovery to COVID-19. Because of the extra detection step, it will take two to three minutes for someone using “Lab on a Chip” for COVID detection to get results on their smartphone. In a trial, an earlier version of the device accurately detected IgG antibodies in 60 seconds using a small sample (just one ng/ml) of lab-bought antigens and antibodies. The precision and speed of “Lab on a Chip” are attributable, in part, to several innovations. One of those is the use of alternating current electrothermal (ACET) flows to bring antibodies in the blood plasma closer to sensor surfaces in the chip, so they can be detected.

The next step in the research will be testing the sensitivity and specificity of the device using lab-purchased human plasma samples spiked with lab-purchased antibodies and antibodies. The researchers will then test the device on plasma from actual COVID patients before it would be made available to the public. The researchers estimate the cost of the electronic instrument to read the chip would be about USD 15 to USD 20. The cost of the disposable cartridge, which is where a drop of blood would go, would likely be less than USD 1.

“There are some other techniques to detect antibodies quickly without using expensive laboratory equipment, but they suffer from sensitivity, accuracy, and consistency issues,” said J.-C. Chiao, one of the lead researchers behind the “Lab on a Chip” test. “Our ultimate goal is to create quantifiable, accurate, fast, and inexpensive diagnostic methods based on the detection of human IgG, IgM, and IgA antibodies. This does not currently exist, and it would have a deep and significant impact on the world, given the devastating effect this coronavirus pandemic has had.”

Related Links:
Southern Methodist University


Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Radial Shock Wave Device
MASTERPULS »ultra«

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: NICO SPECTRA is only hand-held technology delivering blue light closer to target to enhance tissue fluorescence (Photo courtesy of NICO Corporation)

Handheld Device for Fluorescence-Guided Surgery a Game Changer for Removal of High-Grade Glioma Brain Tumors

Grade III or IV gliomas are among the most common and deadly brain tumors, with around 20,000 cases annually in the U.S. and 1.2 million globally. These tumors are very aggressive and tend to infiltrate... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more