We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Inhalable Nanobody-Based Treatment Administered at Ultra-Low Doses Could Prevent and Treat SARS-CoV-2 Infections

By HospiMedica International staff writers
Posted on 27 May 2021
Print article
Image: A new study published in Science Advances found that inhalable nanobodies targeting the spike protein of the SARS-CoV-2 coronavirus can prevent and treat severe COVID-19 in hamsters. Here, bronchioles of hamsters sick with COVID-19 untreated (left) and treated with inhalable nanobodies (right) show the impact of the approach (Photo courtesy of Nambulli et al., Science Advances)
Image: A new study published in Science Advances found that inhalable nanobodies targeting the spike protein of the SARS-CoV-2 coronavirus can prevent and treat severe COVID-19 in hamsters. Here, bronchioles of hamsters sick with COVID-19 untreated (left) and treated with inhalable nanobodies (right) show the impact of the approach (Photo courtesy of Nambulli et al., Science Advances)
A new study has found that inhalable nanobodies targeting the spike protein of the SARS-CoV-2 coronavirus can prevent and treat severe COVID-19 in hamsters.

Scientists from the University of Pittsburgh School of Medicine (Pittsburgh, PA, USA) have shown that inhalable nanobodies targeting the spike protein of the SARS-CoV-2 coronavirus can prevent and treat severe COVID-19 in hamsters. This is the first time the nanobodies - which are similar to monoclonal antibodies but smaller in size, more stable and cheaper to produce - were tested for inhalation treatment against coronavirus infections in a pre-clinical model. The scientists showed that low doses of an aerosolized nanobody named Pittsburgh inhalable Nanobody-21 (PiN-21) protected hamsters from the dramatic weight loss typically associated with severe SARS-CoV-2 infection and reduced the number of infectious virus particles in the animals’ nasal cavities, throats and lungs by a million-fold, compared to placebo treatment with a nanobody that doesn’t neutralize the virus.

Previously, the scientists had discovered a large repertoire of more than 8,000 high-affinity SARS-CoV-2 nanobodies. From this repertoire, the scientists selected an ultrapotent nanobody (Nb21) and bioengineered it into a trimeric form to further maximize its antiviral activity. The resulting PiN-21 is by far the most potent antiviral nanobody that has been identified, according to the researchers’ review of published studies. The experiments showed that PiN-21 was protective when administered intranasally at the time of infection. Hamsters in the PiN-21 treatment group did not lose any body weight, unlike the placebo-treated animals who lost up to 16% of their initial body weight after a week of infection. For the average adult human, the rate of the weight loss would correspond to shedding roughly 20 pounds in a week. Even more impressively, inhalation of aerosolized nanobodies at an ultra-low dose reduced the number of infectious virus particles in the lung tissue by six-fold. Animals who received aerosolized PiN-21 nanobodies had milder changes in the lung structure and a lower degree of inflammation than those who received the placebo.

To deliver therapeutics via aerosolization, the scientists had to overcome several technical challenges - small particle aerosols have to reach deep into the lung - and treatment particles need to be small enough so that they don’t clump together but also strong enough to withstand the extreme pressure required to suspend them in the air. PiN-21 nanobodies, which are approximately four times smaller than typical monoclonal antibodies with exceptionally high stability, are perfectly suited for the task. They also are much cheaper to produce and can be generated rapidly to swiftly adapt to the shape-shifting virus. Researchers point out that the nanobodies and vaccines are complementary and do not compete with one another. Vaccines remain the best tool to stop the virus from spreading from person to person, but nanobodies will be useful to treat people who already are sick and those who can’t get vaccinated for other medical reasons. Promising early preclinical data, combined with the researchers’ extensive knowledge about rapidly identifying drug-quality nanobodies, suggest that this approach can provide a convenient and cost-effective therapeutic option to control the coronavirus pandemic.

“By using an inhalation therapy that can be directly administered to the infection site—the respiratory tract and lungs—we can make treatments more efficient,” said co-senior author Yi Shi, assistant professor of cell biology at Pitt. “We are very excited and encouraged by our data suggesting that PiN-21 can be highly protective against severe disease and can potentially prevent human-to-human viral transmission.”

“COVID-19 is now a preeminent disease of the 21st century,” said coauthor Doug Reed, associate professor of immunology at Pitt. “Delivering the treatment directly to the lungs can make a big difference for our ability to treat it.”

Related Links:
University of Pittsburgh School of Medicine

Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Multilevel Self-Loading Stretcher
CARRERA XL

Print article

Channels

Critical Care

view channel
Image: A demonstration of the on-skin wearable bioelectronic device (Photo courtesy of University of Missouri)

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants

A team of researchers at the University of Missouri (Columbia, MO, USA) has achieved a milestone in developing a state-of-the-art on-skin wearable bioelectronic device. This development comes from a lab... Read more

Surgical Techniques

view channel
Image: The hyperspectral imaging system extracts molecular vibrations of different resins and distinguishes between them with high reproducibility (Photo courtesy of Hiroshi Takemura from Tokyo University of Science)

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Hyperspectral imaging (HSI) is an advanced technique that captures and processes information across a given electromagnetic spectrum. Near-infrared hyperspectral imaging (NIR-HSI) has particularly gained... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more