We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Drug That Blocks Multiple SARS-CoV-2 Variants Could Be a Game-Changer in Treating COVID-19 Infection

By HospiMedica International staff writers
Posted on 31 May 2021
Print article
Image: As seen here with microscopy, lung epithelial cells infected with SARS-CoV-2 (left, yellow) were successfully treated with the STING agonist diABZI (right) by Penn Medicine researchers (Photo courtesy of Penn Medicine)
Image: As seen here with microscopy, lung epithelial cells infected with SARS-CoV-2 (left, yellow) were successfully treated with the STING agonist diABZI (right) by Penn Medicine researchers (Photo courtesy of Penn Medicine)
Scientists have discovered a new drug that blocks multiple SARS-CoV-2 variants in mice and could prove to be a potential game-changer in the treatment of COVID-19.

The drug diABZI discovered by researchers at Penn Medicine (Philadelphia, PA, USA) activates the body’s innate immune response and was highly effective in preventing severe COVID-19 in mice infected with SARS-CoV-2. The finding, suggest that diABZI could also treat other respiratory coronaviruses.

The SARS-CoV-2 virus initially targets epithelial cells in the respiratory tract. As the first line of defense against infection, the respiratory tract’s innate immune system recognizes viral pathogens by detecting their molecular patterns. The research team first sought to better understand this effect by observing human lung cell lines under the microscope that had been infected with SARS-CoV-2. They found that the virus is able to hide, delaying the immune system’s early recognition and response. The researchers predicted that they may be able to identify drugs - or small molecules with drug-like properties - that could set off this immune response in the respiratory cells earlier and prevent severe SARS-CoV-2 infection.

To identify antiviral agonists that would block SARS-CoV-2 infection, the researchers performed high throughput screening of 75 drugs that target sensing pathways in lung cells. They examined their effects on viral infection under microscopy and identified nine candidates -including two cyclic dinucleotides (CDNs) - that significantly suppressed infection by activating STING (the simulation of interferon genes).

Since CDNs have low potency and make poor drugs, the team decided to also test a newly-developed small molecule STING agonist called diABZI, which is not approved by the Food and Drug Administration but is currently being tested in clinical trials to treat some cancers. The researchers found that diABZI potently inhibits SARS-CoV-2 infection of diverse strains, including variant of concern B.1.351, by stimulating interferon signaling.

Finally, the researchers tested the effectiveness of diABZI in transgenic mice that had been infected with SARS-CoV-2. Because the drug needed to reach the lungs, diABZI was administered through a nasal delivery. diABZI-treated mice showed much less weight loss than the control mice, had significantly-reduced viral loads in their lungs and nostrils, and increased cytokine production - all supporting the finding that diABZI stimulates interferon for protective immunity.

The study’s findings offer promise that diABZI could be an effective treatment for SARS-CoV-2 that could prevent severe COVID-19 symptoms and the spread of infection. Additionally, since diABZI has been shown to inhibit human parainfluenza virus and rhinovirus replication in cultured cells, the STING agonist may be more broadly effective against other respiratory viruses.

“Few drugs have been identified as game-changers in blocking SARS-CoV-2 infection. This paper is the first to show that activating an early immune response therapeutically with a single dose is a promising strategy for controlling the virus, including the South African variant B.1.351, which has led to worldwide concern,” said senior author Sara Cherry, PhD, a professor of Pathology and Laboratory Medicine and scientific director of the High-Throughput Screening (HTS) Core at Penn Medicine. “The development of effective antivirals is urgently needed for controlling SARS-CoV-2 infection and disease, especially as dangerous variants of the virus continue to emerge.”

Related Links:
Penn Medicine

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Acute Care Scale
PH-740

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: NICO SPECTRA is only hand-held technology delivering blue light closer to target to enhance tissue fluorescence (Photo courtesy of NICO Corporation)

Handheld Device for Fluorescence-Guided Surgery a Game Changer for Removal of High-Grade Glioma Brain Tumors

Grade III or IV gliomas are among the most common and deadly brain tumors, with around 20,000 cases annually in the U.S. and 1.2 million globally. These tumors are very aggressive and tend to infiltrate... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more