We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Biomarkers Found for COVID-19 Condition in Children May Help Predict Disease Severity and Develop MIS-C Therapies

By HospiMedica International staff writers
Posted on 01 Sep 2021
Print article
Illustration
Illustration
Researchers have found biomarkers that could help predict the severity of a rare but serious complication in children with COVID-19.

The findings of the study led by Cedars-Sinai (Los Angeles, CA, USA) may help predict disease severity and develop therapies for Multisystem Inflammatory Syndrome in Children (MIS-C). This rare but serious inflammatory condition that affects children who contract COVID-19 produces a distinctive pattern of biomarkers that may help physicians predict disease severity and also aid researchers in developing new treatments, according to findings of the study.

The Cedars-Sinai study focused on MIS-C, an inflammatory response involving multiple organs that can occur weeks after infection with SARS-CoV-2, the virus that causes COVID-19. The investigators examined a small group of patients to identify an array of pathogenic pathways culminating in MIS-C, along with proteins in the blood with potential to act as biomarkers to forecast the severity of the syndrome and help drive treatment decisions. A picture is emerging of MIS-C as an autoimmune disease in which the immune system becomes overactive and mistakenly attacks the body's own organs, according to the researchers. This process may be triggered by widespread tissue damage caused by the SARS-CoV-2 infection.

Children with MIS-C often present symptoms similar to those observed in the so-called cytokine storm, an inflammatory response that can be fatal in COVID-19 patients. These symptoms may include persistent fever and gastrointestinal, respiratory, neurological and cardiovascular problems, such as shock and heart muscle inflammation. Previous research had uncovered similar biological processes involved in MIS-C, the cytokine storm and toxic shock syndrome - a rare, life-threatening complication of bacterial infections. For the new study, the research team adopted an interdisciplinary approach in which they examined 69 children, including those with and without MIS-C and seven with another pediatric inflammatory disorder - Kawasaki disease. Future investigations are needed to validate the findings in a larger patient group, according to the researchers.

"We deployed an array of advanced techniques, including proteomics, RNA sequencing and analyses of antibodies and immune system signaling," said Jennifer Van Eyk, PhD, director of the Advanced Clinical Biosystems Research Institute in the Smidt Heart Institute at Cedars-Sinai, and an expert on proteomics - the study of proteins at the molecular and genetic levels. "By combining forces, we are better able to accelerate scientific discoveries to keep pace with the rapidly evolving pandemic and to inform clinical decisions."

Related Links:
Cedars-Sinai

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Workstation
X40

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more