We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

New Algorithm Identifies COVID-19 Patients Who Will Require Intensive Care or Ventilation With 90% Accuracy

By HospiMedica International staff writers
Posted on 25 Nov 2021
Print article
Illustration
Illustration

A new algorithm can predict how many patients will need intensive COVID-related healthcare.

The innovative algorithm developed by researchers from the University of Copenhagen (Copenhagen, Denmark) will help alleviate pressure whenever hospitals are confronted by new waves of COVID. It could provide valuable knowledge when it comes to prioritizing caregivers and ventilators in individual hospitals, and save lives. The algorithm can predict the course of COVID patients' illnesses in relation to how many of them will be highly likely or unlikely to require intensive care or ventilation. This is important for the allocation of staff across hospitals.

The new algorithm is based on health data from 42,526 patients who tested positive for the coronavirus between March 2020 and May 2021. It uses individual patient data, including information about a patient’s gender, age, medications, BMI, whether they smoke or not, blood pressure and more. This allows the algorithm to predict how many patients, within a one-to-fifteen day time frame, will need intensive care in the form of, for example, ventilators and constant monitoring by nurses and doctors.

Traditionally, researchers have used regression models to predict COVID-related hospital admissions. However, these models haven’t taken individual disease histories, age, gender and other factors into account. In fact, the algorithm provides extremely accurate predictions for the likely number of intensive care patients for up to 10 days.

As such, our algorithm has the potential save lives," explained Stephan Lorenzen, a postdoc at the University of Copenhagen’s Department of Computer Science. "We make better predictions than comparable models because we are able to more accurately map the potential need for ventilators and 24-hour intensive care for up to 10 days. Precision decreases slightly beyond that, similar to that of the existing algorithmic models used to predict the course of illness in COVID cases."

Related Links:
University of Copenhagen 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Oxidized Zirconium Implant Material
OXINIUM

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: Real-time analysis image by \"Eureka α\" with connective tissue highlighted in blue (Photo courtesy of Anaut Inc.)

AI-Powered Surgical Visualization Tool Supports Surgeons' Visual Recognition in Real Time

Connective tissue serves as an essential landmark in surgical navigation, often referred to as the "dissection plane" or "holy plane." Its accurate identification is vital for achieving safe and effective... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more