We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Canada to Develop New Isotope Production Methods

By HospiMedica International staff writers
Posted on 11 Mar 2013
Print article
An aging reactor and a worldwide looming shortage of medical isotopes has driven Canada to search for alternatives methods to manufacture technetium-99m (99mTc).

At the moment, Canada's only source of the isotope is the National Research Universal (NRU; Chalk River, Ontario, Canada) reactor at Chalk River Laboratories (CRL, Ontario, Canada), which produces about a third of the world's supply. But the reactor has been plagued with safety and operational problems, leading to worldwide shortages, and its license is set to expire in 2016. Consequently, Canada is investing close to USD 21 million in three projects in western Canada that have demonstrated the ability to produce the key medical isotope without a nuclear reactor.

Two of the research institutes, the national laboratory for particle and nuclear physics (TRIUMF; Vancouver, BC, Canada) and the University of Alberta (Edmonton, Canada) are using cyclotron technology to produce the isotope, while the third, Prairie Isotope Production Enterprise (PIPE; Pinawa, MB, Canada), is using a linear accelerator.

In the cyclotron process, the machine bombards a target of molybdenum-100 with high-energy protons, converting some of its atoms to molybdenum-99 (Mo-99). Then chemical processing removes technetium-99 from the target, ready for use. The PIPE technology uses an electron accelerator rather than a nuclear reactor to make the Mo-99. The electron accelerator sprays electricity onto molybdenum metal, which produces the Mo-99 radioisotope. Next, a chemical process is used to fabricate the Tc-99m.

“The Harper Government is investing in Canadian expertise to help ensure new sources of supply for medical isotopes used in diagnosing various diseases, such as cancer and heart disease,” said Joe Oliver Canada’s natural resources minister. “We are investing in the work needed to attract private sector interest and to bring new technologies to market, and to help ensure that isotope production is on a sound commercial footing.”

Tc-99m is obtained from the decay of its parent isotope Mo-99 compounds that are packed into nuclear "generators" and distributed to hospitals, where nuclear medicine specialists can draw off the Tc-99m as needed for about a week. Tc-99m is used in 80% of nuclear medicine diagnostic procedures in Canada, and about 85% of all medical imaging procedures worldwide. It is currently made in reactors in Canada, the Netherlands, Belgium, France, Australia, and South Africa.

Related Links:

National Research Universal
TRIUMF
Prairie Isotope Production Enterprise


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
CT Phantom
CIRS Model 610 AAPM CT Performance Phantom

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: The implantable ventricular assist device can support a child’s failing heart (Photo courtesy of Jarvik Heart, Inc.)

Small, Implantable Cardiac Pump to Help Children Awaiting Heart Transplant

Implantable ventricular assist devices, available for adults for over 40 years, fit inside the chest and are generally safer and easier to use than external devices. These devices enable patients to live... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more