HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Novel Pipeline of AI and Simulation Tools Could Make Process of Screening Drug Candidates for COVID-19 50,000 Times Faster

By HospiMedica International staff writers
Posted on 15 Feb 2021
Print article
Image: Novel Pipeline of AI and Simulation Tools Could Make Process of Screening Drug Candidates for COVID-19 50,000 Times Faster (Photo courtesy of Argonne National Laboratory)
Image: Novel Pipeline of AI and Simulation Tools Could Make Process of Screening Drug Candidates for COVID-19 50,000 Times Faster (Photo courtesy of Argonne National Laboratory)
A novel pipeline of AI and simulation tools could make the process of screening drug candidates for COVID-19 50,000 times faster.

To find a drug that can stop the SARS-CoV-2 virus, scientists want to screen billions of molecules for the right combination of properties. The process is usually risky and slow, often taking several years. An international team of scientists from 10 organizations, including the US Department of Energy’s (DOE) Argonne National Laboratory (Lemont, IL, USA), have found a way to make the process 50,000 times faster using artificial intelligence (AI). The team has developed a pipeline of AI and simulation techniques, named IMPECCABLE, short for Integrated Modeling PipelinE for COVID Cure by Assessing Better Leads to hasten the discovery of promising drug candidates for COVID-19.

IMPECCABLE integrates multiple techniques for data processing, physics-based modeling and simulation, and machine learning, a form of AI that uses patterns in data to generate predictive models. At the start of the pipeline, computational techniques are used to calculate the basic properties of billions of molecules. This data is used in the next stage of the pipeline to create machine learning models that can predict how likely it is that a given molecule will bind with a known viral protein. Those found to be most promising are then simulated on high-performance computing systems.

Very large experimental data sets are also being gathered from thousands of protein crystals using X-rays at the Advanced Photon Source (APS), a DOE Office of Science User Facility on Argonne’s campus. The technique they’re using to get this data is known as X-ray crystallography. With it, researchers can capture detailed images of viral proteins and their chemical states to improve the accuracy of their machine learning models. The ultimate goals of the pipeline are to understand the function of viral proteins; identify molecules with a high potential to bind with these proteins and, as a result, block SARS-CoV-2 proliferation; and deliver this insight to drug designers and developers for further research and development.

“With the AI we’ve implemented, we’ve been able to screen four billion potential drug candidates in a matter of a day, while existing computational tools might only realistically screen one to 10 million,” said Thomas Brettin, strategic program manager at Argonne.

“Unlike the traditional approach, where you rely on the scientist to think really hard and, based on what they know, come up with ideas for a molecule, with our pipeline you can screen huge numbers of molecules automatically, dramatically increasing your chance of finding a likely candidate,” said Ian Foster, director of Argonne’s Data Science and Learning division.

Related Links:
Argonne National Laboratory

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Ventilator
TRventi-3D

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more