We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Low-Cost, Portable Ventilator Based on Intelligent 3D-Printed Origami Technology Could Improve COVID-19 Treatment

By HospiMedica International staff writers
Posted on 10 Sep 2021
Print article
Image: Low-Cost, Portable Ventilator Based on Intelligent 3D-Printed Origami Technology Could Improve COVID-19 Treatment (Photo courtesy of Simon Fraser University)
Image: Low-Cost, Portable Ventilator Based on Intelligent 3D-Printed Origami Technology Could Improve COVID-19 Treatment (Photo courtesy of Simon Fraser University)
3D-printed origami technology is at the heart of a low-cost, portable ventilator aimed at improving COVID-19 treatment and revolutionizing healthcare delivery.

Researchers from the Simon Fraser University (Burnaby, Canada) are replicating a distinctive art form - the subtle folding of origami - to create 3D printable technologies to aid in the fight against COVID-19, and help doctors to identify and diagnose various health conditions. The low-cost, portable 3D-printed ventilator, driven by a patented, intelligent 3D-printed origami tube, is designed to assist a person’s breathing by reliably contracting the 3D-printed origami tube, rather than compressing a conventional bag-valve mask (BVM), which reduces the overall size of the assisted breathing machine with mechanical strength gain. The 3D-printed design and lightweight materials also lowers production costs.

Its small and lightweight design, combined with low production costs, makes the portable ventilator useful for treating COVID-19 patients or patients who need a compact and transportable device outside of hospital settings, such as long-term care homes or in remote rural areas and developing countries.

“In our portable origami ventilator, more than 95% of components can be 3D printable, that’s why it is really cost-efficient,” said SFU School of Mechatronic Systems Engineering’s associate professor Woo Soo Kim who led the work. “Other portable ventilators can cost over USD 2,000, but our 3D-printed ventilator can be produced for about USD 200.”

Related Links:
Simon Fraser University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Illuminated Retractor System
HandLite

Print article

Channels

Critical Care

view channel
Image: The potential for controlling diabetes with a single endoscopic treatment is spectacular (Photo courtesy of 123RF)

One-Hour Endoscopic Procedure Could Eliminate Need for Insulin for Type 2 Diabetes

Over 37 million Americans are diagnosed with diabetes, and more than 90% of these cases are Type 2 diabetes. This form of diabetes is most commonly seen in individuals over 45, though an increasing number... Read more

Surgical Techniques

view channel
Image: The FieldForce Catheter is the first and only contact force PFA catheter optimized for the ventricles (Photo courtesy of Field Medical)

First-Ever Contact Force Pulsed Field Ablation System to Transform Treatment of Ventricular Arrhythmias

It is estimated that over 6 million patients in the US and Europe are affected by ventricular arrhythmias, which include conditions such as ventricular tachycardia (VT) and premature ventricular contractions (PVCs).... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more