HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Personalized Robotic Platform Rehabilitates Disorganized Gait

By HospiMedica International staff writers
Posted on 06 Feb 2019
Print article
Image: The Optimal-G Pro personalized gait platform (Photo courtesy of Motorika).
Image: The Optimal-G Pro personalized gait platform (Photo courtesy of Motorika).
An advanced gait rehabilitation system uses enhanced learning intelligence technology (ELITE) to provide optimal neuromuscular re-education and brain retraining.

The Motorika (Mount Laurel, NJ, USA) Optimal-G Pro system integrates clinical principles of gait rehabilitation and motor learning with expertise in robotic technology to restore natural physiological gait patterns in both adults and pediatric patients following neurological trauma or orthopedic injury. The system provides real-time video biofeedback through front and side cameras that offer superior visualization in order to reinforce proper gait biomechanics. ELITE proactively adjusts the patient's treatment plan, based on objective clinical data and their individual progress.

Neuromuscular re-education and brain retraining are facilitated by intensive and repetitive reciprocal motion, recovering normal gait patterns and improves ambulatory capabilities, balance, stability, and posture. By continuously analyzing functional abilities, therapists can provide recommendations and correct adjustments based on treatment parameters, enabling improved decision-making, progressing therapy programs, and enhancing patient care.

The Optimal-G Pro system is designed to allow for natural gait kinematic movements of the hip, knee, and ankle during walking by helping to provide three-dimensional (3D) freedom of movement of the pelvis, including lateral shift, rotation and up/down vectors. Optimal weight bearing and pressure distribution are provided by shifting load from the robotic support to the patient’s lower limbs, using an ergonomically designed harness and foot-lifters. In addition, the system provides muscle resistance measurement, passive, active, and active-assist modes of therapy, 18 physiological gait profiles, interactive games, and virtual reality.

“Robot rehabilitation solutions enable therapists to enhance traditional treatments. For example, they can be easily used under the supervision of one therapist, providing intensive, task-oriented gait training, as part of a set of rehabilitation tools that additionally include other non-robotic approaches,” said Arik Avni, co-CEO of Motorika. “Thanks to ELITE, the Optimal-G Pro enables rehabilitation professionals, for the first time, to offer a proactive motor learning technology that personalizes patient therapy and ultimately accelerates recovery.”

Human gait is defined as bipedal, biphasic forward propulsion of the center of gravity of the human body, in which there are alternate sinuous movements of different segments of the body with least expenditure of energy. Different gait patterns are characterized by differences in limb-movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in the contact with the surface.

Related Links:
Motorika

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Baby Warmer
THERMOCARE Convenience

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more