HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Novel Endotracheal Tube Coating Reduces Airway Inflammations

By HospiMedica International staff writers
Posted on 17 Aug 2021
Print article
Image: Electron microscopy images of coated and uncoated ET tubes (Photo courtesy of CHOP)
Image: Electron microscopy images of coated and uncoated ET tubes (Photo courtesy of CHOP)
A new study shows how a coating that releases antimicrobial peptides (AMPs) over a two-week period reduces upper-airway inflammation and subglottic stenosis (SGS) following intubation.

Developed at The Children's Hospital of Philadelphia (CHOP; PA, USA), the drug-eluting endotracheal (ET) coating consists of a water-in-oil emulsion of Lasioglossin-III (Lasio) in a base of poly(d,l-lactide-co-glycolide) (PLGA). Antibacterial activity was tested against Staphylococcus epidermidis, Streptococcus pneumoniae, and pooled human microbiome samples by placing ET tubes coated with Lasio/PLGA and appropriate controls in 48 well plates with diluted bacteria. Peptide release was quantified over two weeks via fluorometric peptide assays.

Biocompatibility was tested against laryngotracheal fibroblasts and lung epithelial cells, and bacterial inhibition and tube adhesion were tested by measuring optical density and colony formation after tube culture, respectively. The results revealed a prolonged, linear release over one week, the typical timeframe before the ET tube is changed. Significant antibacterial activity was evidenced during the study period, as well as prevention of bacterial adherence to the tube. No cytotoxicity to fibroblasts or lung epithelial cells was found. The study was published on July 28, 2021, in The Laryngoscope.

“We have created a novel device to modulate the upper-airway microbiome, which could be used to prevent bacterial infections during intubation and help prevent subglottic stenosis and other airway diseases,” said senior author Riccardo Gottardi, PhD, assistant professor of pediatrics and head of the bioengineering and biomaterials lab at CHOP. “Not only does this technology work predictably and continuously over the normal duration of chronically intubated patients, but it is also fast and easy to produce and could easily be modulated to target any bacteria of interest.”

AMPs, of which over 1,700 have been identified so fare, are potent, broad spectrum therapeutic agents that have been shown to kill both Gram positive and gram negative bacteria, enveloped viruses, fungi, and even some cancerous cells. Unlike antibiotic drugs, AMPs appears to destabilize biological membranes, form transmembrane channels, enhance immunity by altering host gene expression, induce chemokine production, promote wound healing, and modulate the responses of dendritic cells and cells of the adaptive immune response.

Related Links:
The Children's Hospital of Philadelphia

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Cart
UMGSA-33369-VIL

Print article

Channels

Critical Care

view channel
Image: The new risk assessment tool determines patient-specific risks of developing unfavorable outcomes with heart failure (Photo courtesy of 123RF)

Powerful AI Risk Assessment Tool Predicts Outcomes in Heart Failure Patients

Heart failure is a serious condition where the heart cannot pump sufficient blood to meet the body's needs, leading to symptoms like fatigue, weakness, and swelling in the legs and feet, and it can ultimately... Read more

Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more